
Principles of Software Testing for Testers Instructor Notes

Module 4 - Defining the Evaluation Mission 4 - 1

Instructor Notes:

Principles of Software Testing for
Testers

Module 4: Define Evaluation Mission

See
accompanying
Word Doc for
detailed
instructor notes.

We just looked at test ideas;
now we’re going to the
other end of the
management scale:

How do we decide what we
are going to do in the
project? In the iteration?

Our focus in this module
will cover:

Test plans: What level of
detail is appropriate?

IEEE Standard 829-type
templates

The issues of time, cost,
flexibility and maintainability

Requirements for test docs

Formulating a mission
statement for test docs.

Principles of Software Testing for Testers Instructor Notes

Module 4 - Defining the Evaluation Mission 4 - 2

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 2

Module 4 Agenda

Definition of the workflow:
Define Evaluation Mission
Defining the mission of the test group
Defining the goal for test documentation

There is an infinite number of
tasks that we could do as
testers. We know not to enter
blindly. But how do we agree
with our stakeholders on
what’s important?

That’s the role of the test
mission – to negotiate
stakeholder buy-in for the test
plan and to focus our priorities
as testers.

A test mission is critical if you
ever hope to get through the
decision process for selecting
what work MUST be done to
insure this project meets
quality goals (given finite time
and resources).

Principles of Software Testing for Testers Instructor Notes

Module 4 - Defining the Evaluation Mission 4 - 3

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 3

Review: Where We’ve Been

In the introductory module
we discussed the concepts
of quality and test ideas
In the last module, we
introduced some of the
basic elements in the RUP
Test content
We’ll use those basic RUP
elements throughout the
remainder of the course to
help provide context for
what we’ll learn.

I/O
AA 9 9 9 9

AA9 A9 9
A 9 9 99 9
AA9 A 9 9

Context Slide. Avoid
spending too much time
here: spend enough time to
help the students take stock
of what they have learned
so far. Answer any related
questions they have, then
move on.

Main points to review:
•Roles, Activities and
Artifacts.
•Workflow Details.
•Iterations.
Optionally, you might also
recap:
•Quality
•Test Ideas

Principles of Software Testing for Testers Instructor Notes

Module 4 - Defining the Evaluation Mission 4 - 4

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 4

Define Evaluation Mission

In this module, we begin
with the workflow detail
Define Evaluation Mission
The Mission focuses on
the high-level objectives of
the test team for the
current iteration

What things should motivate
us to test?
Why these things (and not
others)?

The purpose of this workflow detail is to:

•Identify the appropriate focus of the test effort for the iteration.

•Gain agreement with stakeholders on the corresponding goals that
will direct the test effort

•For each iteration, work is focused mainly on:

•Identifying the objectives for, and deliverables of, the testing
effort

•Identifying a good resource utilization strategy

•Defining the appropriate scope and boundary for the test
effort

•Outlining the approach that will be used

•Defining how progress will be monitored and assessed.

Context Slide. Avoid
spending too much time
here: spend enough time to
give the students a high-
level understanding.
Answer any related
questions they have, then
move on.

The main point is to briefly
explain the context and
scope of this module
relative to the rest of the
course.

Explain that the Test and
Evaluate Workflow Detail
will be delivered in two
parts: the first focusing on
Test Techniques, the
second on Evaluating the
results of the Tests.

Explain briefly that Test &
Evaluate is the core RUP
Workflow Detail for the
Software Tester. Relate it
back to the Define
Evaluation Mission
Workflow Detail in which
Mission and Test Approach
were discussed.

Principles of Software Testing for Testers Instructor Notes

Module 4 - Defining the Evaluation Mission 4 - 5

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 5

Define Evaluation Mission
This module focuses
on the activities that
capture the goals of
our testing efforts.
We will look at
different Missions
that test teams use,
and consider the
implications on the
corresponding Test
Approach those
teams take.
These are the
activities that create
the Test Plan.

Here are the roles, activities and artifacts RUP focuses on in this work.

In earlier modules, we discussed how identifying test ideas is a useful
way to reason about tests early in the lifecycle without needing to
completely define each specific test. We also looked at some of the
basic elements that are used to define the Rational Unified Process.

In this module we’ll look at a how different test teams need to use
different evaluation missions, depending on their specific context.

In the next module, we’ll talk more about applying different
techniques in our tests effort.

Note that diagram shows some light shaded elements: these are
additional testing elements that RUP provides guidance for which not
covered directly in this course. You can find out more about these
elements by consulting RUP directly.

Principles of Software Testing for Testers Instructor Notes

Module 4 - Defining the Evaluation Mission 4 - 6

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 6

Module 4 Agenda

Definition of the workflow:
Define Evaluation Mission
Defining the mission of the test group
Defining the goal for test documentation

There are an infinite number
of tasks that we could do as
testers. We know not to enter
blindly. But how do we agree
with our stakeholders on
what’s important?

That’s the role of the test
mission – to negotiate
stakeholder buy-in for the test
plan and to focus our priorities
as testers.

A test mission is critical if you
ever hope to get through the
decision process for selecting
what work MUST be done to
insure this project meets
quality goals (given finite time
and resources).

Principles of Software Testing for Testers Instructor Notes

Module 4 - Defining the Evaluation Mission 4 - 7

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 7

Exercise 4.1: Which Group is Better?

Found pre-
release

Function A 100
Function B 0
Function C 0
Function D 0
Function E 0
Total 100

Function A 50
Function B 6
Function C 6
Function D 6
Function E 6
Total 74

Two groups test the
same program.

• The functions are
equally important

• The bugs are
equally significant

Testing Group 1

Testing Group 2

From Marick,
Classic Testing
Mistakes

Imagine giving the same product to two completely independent test
groups. The product has lots of functions, but you pick out five that
you consider the most important:

• These 5 functions are equally important.

• You expect that on average, the bugs found in any one of the
functions will be as serious or significant as bugs found in the
others.

Test Group 1 starts with a broad test, trying all the functions with easy
values. No obvious bugs show up in Functions B, C, D or E, but
Function A is clearly broken from the start.

Over the next few weeks, Test Group 1 keeps testing the program.
Their goal is to find lots of bugs. They spend a little more time on
Functions B, C, D and E, but primarily focus on Function A, where it is
all too easy to find bugs. Test Group 1 never finds any bug in Function
B, C, D, or E, but they find 100 in Function A.

Test Group 2 starts with essentially the same broad test and finds the
same result. Function A appears to be full of bugs. As to B, C, D, and E,
no obvious bugs show up in the first round of testing.

Test Group 2 follows a different testing strategy. They do a lot more
testing of B, C, D, and E – even though they don’t find as many bugs in
these functions, because they want to achieve a certain baseline level
of coverage. As a result, they find only 50 bugs in A and a few bugs in
B, C, D, and E.

WHICH IS THE BETTER TESTING GROUP?

This example is artificial, but it
sets up a simple context for
our discussion of tradeoffs.

The goal here is to facilitate a
discussion that brings out the
students’ differing
assumptions.

Ask the students to vote on
which is the better group and
have students from each side
explain their thinking.

Play devil’s advocate, a little
bit, to help the discussion
crystallize.

Principles of Software Testing for Testers Instructor Notes

Module 4 - Defining the Evaluation Mission 4 - 8

Instructor Notes:

Your Notes:

This is just a blank page, here
to prevent them from
accidentally seeing the next
slide before you want them to
see it.

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 8

Notes

This slide was intentionally left blank.

Principles of Software Testing for Testers Instructor Notes

Module 4 - Defining the Evaluation Mission 4 - 9

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 9

Exercise 4.2: Which Group is Better?
Found pre-

release
Found

later
Total

Function A 100 0 100
Function B 0 12 12
Function C 0 12 12
Function D 0 12 12
Function E 0 12 12
Total 100 48 148

Function A 50 50 100
Function B 6 6 12
Function C 6 6 12
Function D 6 6 12
Function E 6 6 12
Total 74 74 148

Here’s some more data.

The company shipped the product. Six months later, we look at
customer support call data and we see a bunch of new bugs found by
customers.

• The first group found all the bugs in Function A but missed 48
bugs in B,C, D and E.

• The second group found half the bugs of each function.

• The first group found 100 of the 148 bugs

• The second group found 74 of the 148 bugs, but they were more
evenly distributed across functions.

WHICH GROUP IS BETTER? WHY?

Get the discussion to continue.
Alternate between students who
think that Group 1 is better and
students who think that Group 2
is better.

The numbers found are the
same as on the last slide. The
difference is that we
extrapolated to post-sale results.
Now people see the effect of the
testing prioritization. One group
achieved broader testing and
found 50% of all the bugs,
spread across all modules. The
other group achieved more
intense testing of the highest risk
area and found more bugs but
unevenly spread.

If the goal is to minimize tech
support cost, Group 1 is
probably doing the better testing
job.

If the goal is to evaluate the
quality of the overall product,
Group 1 is doing a weak job
because we have sketchy
information about the other 4
functions.

In practice, some students will
switch groups after seeing this
slide and your explanation of it.

Principles of Software Testing for Testers Instructor Notes

Module 4 - Defining the Evaluation Mission 4 - 10

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 10

So? Purpose of Testing?

The typical testing group has two key
priorities.
Find the bugs (preferably in priority order).

Assess the condition of the whole product
(as a user will see it).

Sometimes, these conflict
The mission of assessment is the underlying
reason for testing, from management’s
viewpoint. But if you aren’t hammering hard on
the program, you can miss key risks.

How good a test group is
depends on how well the
group satisfies its mission.

How good its mission is
depends on the test group’s
interaction with the rest of the
organization.

• Group 1 is a failing group
if the organization’s goal
for testing is assessment

• Group 2 is failing if the
organization’s goal is
maximize bug count.

• The mission as seen by the
test group must match the
mission as seen outside of
the test group, or
whatever the test group
achieves will be perceived
by others as inadequate.

James Bach uses an interesting
metaphor here (ref. Lessons
Learned in Software Testing,
page 1), when he calls the test
team the “headlights of the
project”.

Of the two sensible answers to
the mission that we’ve
considered so far, which one
fits you?

Note that this is closely tied to
your definition of quality. Are
you looking for:

• Conformance to specs, or
• Nonconformance to user

expectation?

Discussion point:
•What is your mission?

Principles of Software Testing for Testers Instructor Notes

Module 4 - Defining the Evaluation Mission 4 - 11

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 11

Missions of Test Groups Can Vary

Find defects
Maximize bug count
Block premature product releases
Help managers make ship / no-ship decisions
Assess quality
Minimize technical support costs
Conform to regulations
Minimize safety-related lawsuit risk
Assess conformance to specification
Find safe scenarios for use of the product (find
ways to get it to work, in spite of the bugs)
Verify correctness of the product
Assure quality

Even if the test group has an overall mission, its objectives will vary
over the life of the project. For example, a group whose primary role
was defect-hunting through most of the project might be expected to
provide quality evaluations as the project gets closer to its planned
release date.

It is important for the test group to decide its guiding objectives for
each iteration, and to reassess these as part of the preparation for each
iteration.

In addition to thinking about
your own mission, think about
other companies.
Where would you guess
Boeing’s mission is? How
about Microsoft’s?

Is the test activity creative or
investigative?
How independent do you
think a test group should be?

What happens if you do not
negotiate the mission?

Principles of Software Testing for Testers Instructor Notes

Module 4 - Defining the Evaluation Mission 4 - 12

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 12

Exercise 4.3: What Is Your Mission?

Pick a company and a product
Probably your own
If you don’t want to use your current one, pick
one everyone knows

Form project teams
What’s the test mission?

Optional Exercise

Exercise guidelines

Possible exercise/discussion:
What would be an
appropriate mission for testing
a PBX? A computer game?

If you do this as an exercise,
split the class into project
teams. Teams should include
the test manager, product
development manager,
marketing manager, and the
company’s lawyer. For larger
teams, add the tech support
manager and the sales
manager. If this is an in-house
development group, consider
replacing the marketing
manager with the customer
representative.

Have each group tackle the
same type of product and
negotiate their mission. At the
end of the exercise, compare
missions across groups and get
to the reasoning underlying
the differences in choices.

•Then transition to the next
slide by saying,
Now let’s look at mission a
little differently. How many
of the product’s total bugs do
you think the test team is
finding?

Principles of Software Testing for Testers Instructor Notes

Module 4 - Defining the Evaluation Mission 4 - 13

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 13

A Different Take on Mission: Public vs. Private Bugs

A programmer’s public bug rate includes all
bugs left in the code at check-in.
A programmer’s private bug rate includes
all the bugs that are produced, including the
ones fixed before check-in.
Estimates of private bug rates have ranged
from 15 to 150 bugs per 100 statements.
What does this tell us about our task?

A programmer’s public bug rate includes all bugs left in the code when
it is given to someone else (such as a tester.) Rates of one bug per
hundred statements are not unusual, and several programmers’ rates
are higher (such as three bugs per hundred).

A programmer’s private bug rate includes all the bugs that are
produced, including the ones already fixed before passing the program
to testing.

Estimates of private bug rates have ranged from 15 to 150 bugs per
100 statements. Therefore, programmers must be finding and fixing
between 80% and 99.3% of their own bugs before their code goes into
test. (Even the sloppy ones find and fix a lot of their own bugs.)

What does this tell us about our task?

It says that we’re looking into the programmer’s (and tools’) blind
spots. Merely repeating the types of tests that the programmers did
won’t yield more bugs. That’s one of the reasons that an alternative
approach is so valuable.

Conclusion: Unless the tester's methods are different from the
programmer's, the tester will be going over already well tested grounds.

Test activity does not happen
independent of a
development process. Take a
look at your development
process. How much unit
testing do your developers do
and how is its coverage
tracked?
Do testers know what the devs
are already doing? Do testers
know the risks by dev asset?
Do they know whether
boundary testing is being done
in devt?

Thinking about public vs.
private bug rates takes a very
different look at the problem.

Principles of Software Testing for Testers Instructor Notes

Module 4 - Defining the Evaluation Mission 4 - 14

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 14

Defining the Test Approach

The test approach (or “testing strategy”)
specifies the techniques that will be used to
accomplish the test mission.
The test approach also specifies how the
techniques will be used.
A good test approach is:

Diversified
Risk-focused
Product-specific
Practical
Defensible

Diversified. Include a variety of techniques. Each technique is tailored
to expose certain types of problems, and is virtually blind to others.
Combining them allows you to find problems that would be hard to
find if you spent the same resource on a narrower collection of
techniques.

Risk-focused. Tests give you the opportunity to find defects or
attributes of the software that will disappoint, alienate, or harm a
stakeholder. You can’t run all possible tests. To be efficient, you should
think about the types of problems that are plausibly in this product or
that would make a difference if they were in this product, and make
sure that you test for them.

Product-specific. Generic test approaches don’t work. Your needs and
resources will vary across products. The risks vary across products.
Therefore the balance of investment in different techniques should
vary across products.

Practical. There’s no point defining an approach that is beyond your
project’s capabilities (including time, budget, equipment, and staff
skills). For example, you won’t be likely to succeed if you try to build a
fully automated test plan if you have a team full of non-programmers.

Defensible. Can you explain and justify the work that you are doing?
Does your approach allow you to track and report progress and
effectiveness? If you can’t report or justify your work, are you likely to
be funded as well as you need?

The Mission guides your
testing objective in the
iteration. Now we’re going to
think about the How question:
The Test Approach.

Principles of Software Testing for Testers Instructor Notes

Module 4 - Defining the Evaluation Mission 4 - 15

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 15

Heuristics for Evaluating Testing Approach

James Bach collected a series of heuristics
for evaluating your test approach. For
example, he says:

Testing should be optimized to find important
problems fast, rather than attempting to find all
problems with equal urgency.

Please note that these are heuristics – they
won’t always the best choice for your
context. But in different contexts, you’ll find
different ones very useful.

It would be helpful to crack the
book, look at the table pages (257-
259), and talk about some of the
heuristics.

For example, Bach suggests that
you maximize diversity in your
testing.

• Is this always practical?
• Do you risk trading off depth

against breadth?
• Has anyone in the class

worked on a project in which
significant bugs were missed
that might have been more
easily found by a technique
that wasn’t used?

A heuristic is a rule of thumb, a rule that is useful but not always correct.

Example of a heuristic

The test approach should focus most effort on areas of potential
technical risk, while still putting some effort into low risk areas just in
case the risk analysis is wrong.

Basis for this heuristic

Complete testing is impossible, so we have to select the tests to run.
Ideally, we would run the tests that promise to provide the most useful
information. However, no risk analysis is perfect. We have to put some
effort into checking out the areas that appear to be low risk, just in case.

The full list is included as a table in the course textbook, Lessons
Learned in Software Testing, pages 257-259.

Principles of Software Testing for Testers Instructor Notes

Module 4 - Defining the Evaluation Mission 4 - 16

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 16

Module 4 Agenda

Definition of the workflow:
Define Evaluation Mission
Defining the mission of the test group
Defining the goal for test documentation

There are an infinite number
of tasks that we could do as
testers. We know not to enter
blindly. But how do we agree
with our stakeholders on
what’s important?

That’s the role of the test
mission – to negotiate
stakeholder buy-in for the test
plan and to focus our priorities
as testers.

A test mission is critical if you
ever hope to get through the
decision process for selecting
what work MUST be done to
insure this project meets
quality goals (given finite time
and resources).

Principles of Software Testing for Testers Instructor Notes

Module 4 - Defining the Evaluation Mission 4 - 17

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 17

What Test Documentation Should You Use?

Test planning standards and templates
Examples
Some benefits and costs of using IEEE-829
standard based templates
When are these appropriate?

Thinking about your requirements for test
documentation

Requirements considerations
Questions to elicit information about test
documentation requirements for your project

IEEE Standard 829 for software test documentation is a standard
initially published by the Institute for Electrical and Electronics
Engineers (1983) and later approved by the American National
Standards Institute.

The standard describes a wide range of types of information that can
be included in test documentation. For examples, see the next slide.

This is an overview slide. We’ll
cover the topics listed here in
the next slides.

The underlying topic can be
summarized as follows:

• What test documentation
makes sense for your
project? Don’t start with
“How?” or “What should
it look like?”, but start
with, “What is it
supposed to do?”

Principles of Software Testing for Testers Instructor Notes

Module 4 - Defining the Evaluation Mission 4 - 18

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 18

IEEE Standard 829 for Software Test Documentation

Test plan
Test-design specification
Test-case specification

Test-case specification identifier
Test items
Input specifications
Output specifications
Environmental needs
Special procedural requirements
Intercase dependencies

Test-procedure specification
Test-item transmittal report
Test-log

We often see
one or more
pages per
test case.

In the course text, Lessons Learned in Software Testing, there are two
conflicting lessons:

• Lesson 145: Use the IEEE Standard 829 for test
documentation.

• Lesson 146: Don't use the IEEE Standard 829.

These two lessons contrast circumstances under which the standard is
appropriate and under which it is not.

A critical point to recognize here is that test documentation is not free
and can be very expensive.

It is common to see a full page of documentation for a simple test case
and many pages for complex test cases. It probably takes 1 to 8 hours
to write a page of test documentation (Technical writers take about 8
hours per page on software user manuals, when you include the
research, writing formatting and editing time. For more on the
productivity of tech writers, see JoAnn Hackos, Managing Your
Documentation Projects, Wiley.)

No IEEE standard 829
standard test plan is required
to have all this information,
but the typical 829 template
calls for it. Test cases are often
described, in practice, in
great detail.

Why spend so much time on
IEEE 829? Most test planning
templates, including the
example template given in
RUP, are based on 829.
Whether the student has
heard the 829 name or not,
most of the discussions he or
she has read or heard about
regarding what a test plan
should contain, trace back to
standard 829.

Principles of Software Testing for Testers Instructor Notes

Module 4 - Defining the Evaluation Mission 4 - 19

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 19

Considerations for IEEE 829

What is the documentation cost per test case?
What is the maintenance cost of the
documentation, per test case?
If software design changes create documentation
maintenance costs, how much inertia do we build
into our system? How much does extensive test
documentation add to the cost of late
improvement of the software? How much should
we add?
What inertia is created in favor of invariant
regression testing?
Is this incompatible with exploratory testing? Do
we always want to discourage exploration?

Some other questions to consider are:

• What is the impact on high-volume test automation? If the
documentation cost per test case is high, how can you afford to
create a multi-million test case project?

• How often do project teams start to follow 829 but then give it up
mid-project? What does this do to the net quality of the test
documentation and test planning effort?

• What requirements are filled by following a template based on
829?

• Which stakeholders gain a net benefit from IEEE standard
documentation?

• What benefits do they gain and why are those benefits important to
them?

The cost of testing
documentation should not
determine the project strategy.
This will only create inertia –
we can’t afford to do X
important tasks because it
costs too much to change the
document.

Sometimes 829 is valuable:
• Evidence against future

liability
• Contractual fulfillment
• Multisite coordination
• Safety-critical projects
• Regulatory requirements

For more ideas, see Lessons,
pages 129-136.
=========

“Invariant regression testing?”
refers to repetition of exactly
the same tests time after time.
This is sometimes the right
thing to do (e.g. build
verification testing) but
sometimes building variation
into testing is more valuable
than building in exact
repeatability. The problem of
“inertia” is this: If you fully
document every test, and face
a maintenance cost to the test
documentation every time you
change a test, you are less
likely to vary tests – not
because variation is technically
undesirable, but because the
documentation process makes
it expensive.

Principles of Software Testing for Testers Instructor Notes

Module 4 - Defining the Evaluation Mission 4 - 20

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 20

Requirements for Test Documentation

There are many different notions of what a good
set of test documentation would include. Before
spending a substantial amount of time and
resources, it’s worth asking what documentation
should be developed (and why?)
Test documentation is expensive and it takes a
long time to produce. If you figure out some of
your main requirements first, you might be able to
do your work in a way that achieves them.

Lessons Learned in Software Testing provides 18 questions (page 136-
140) that you can use to guide your analysis of your test
documentation requirements.

We’ll consider one example on the next slide.

Consider your project plan as
a whole:

• Frequency of iterations
• Ability to manage change on

requirements, design model
and test plan

• Extent of parallel
development

Principles of Software Testing for Testers Instructor Notes

Module 4 - Defining the Evaluation Mission 4 - 21

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 21

Test Docs Requirements Questions

Is your test documentation a product or
a tool?

A product is something that you give to
someone else to use. They pay for it. You will
probably follow whatever standard they request,
subject to their willingness to pay for it.
In contrast, if the documentation is merely an in-
house tool, it doesn't have to be any more
complete, more organized, or more tidy than the
minimum you need to help you meet your
objectives.

Here are some additional examples:
• Is software quality driven by legal issues or by market forces?

• How quickly is the design changing?

• How quickly does the design specification change to reflect design
change?

• Is testing approach oriented toward proving conformance to specs or
nonconformance with customer expectations?

• Does your testing style rely more on already-defined tests or on
exploration?

• Should test docs focus on what to test (objectives) or on how to test
for it (procedures)?

• Should the docs ever control the testing project?

• If the documentation controls parts of the testing project, should that
control come early or late in the project?

• Who are the primary readers of these test documents and how
important are they?

• How much traceability do you need? What documents (specifications
or requirements) are you tracing back to and who controls them?

This discussion is most relevant for
those testing groups who think
about specific types of tasks or
artifacts.

In the RUP, we typically discuss the
testing approach in terms of
mitigation of risk. However, as we’ll
see later, this is not the only
approach to thinking about testing.

When groups think in terms of test
documentation artifacts, it is
important to drill into the real
requirements of those artifacts.

Principles of Software Testing for Testers Instructor Notes

Module 4 - Defining the Evaluation Mission 4 - 22

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 22

Write a Purpose Statement for Test Documentation

Try to describe your core documentation
requirements in one sentence that doesn’t
have more than three components.
Examples:

The test documentation set will primarily
support our efforts to find bugs in this version,
to delegate work, and to track status.
The test documentation set will support ongoing
product and test maintenance over at least 10
years, will provide training material for new
group members, and will create archives
suitable for regulatory or litigation use.

The purpose statement for test
documentation should follow
from the test mission
statement.

Get explicit stakeholder
agreement on the purpose and
nature of documentation you
are expected to produce.

Principles of Software Testing for Testers Instructor Notes

Module 4 - Defining the Evaluation Mission 4 - 23

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 23

Exercise 4.4: Purpose for Your Test Documentation?

Use the company and product from Ex. 4.3
Reform project teams
What’s the test documentation goal?

Optional Exercise
Regroup into your project teams and take ten minutes to discuss
the exercise. Write down the answer, so you can share it with the
group.

Principles of Software Testing for Testers Instructor Notes

Module 4 - Defining the Evaluation Mission 4 - 24

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 24

Review: Define Evaluation Mission

What is a Test Mission?
What is your Test Mission?
What makes a good Test Approach (Test
Strategy)?
What is a Test Documentation Mission?
What is your Test Documentation Goal?

