
Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 1

Instructor Notes:

Principles of Software Testing for
Testers

Module 5: Test & Evaluate

See
accompanying
Word Doc for
detailed
instructor notes.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 2

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 2

Module 5 Agenda

Overview of the workflow: Test and Evaluate
Defining test techniques—the primary types and
styles of functional testing
Individual techniques
Using techniques together

In the next module:
Analyze test failures
Report problems

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 3

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 3

Review: Where We’ve Been

In the last module, we
covered the workflow detail
Define Evaluation Mission
The Mission focuses on the
high-level objectives of the
test team for the current
iteration

What things should motivate
us to test?
Why these things (and not
others)?

Context Slide. Avoid
spending too much time
here: spend enough time to
help the students take stock
of what they have learned
so far. Answer any related
questions they have, then
move on.

Main points to review:
•Evaluation Mission

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 4

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 4

Test and Evaluate – Part One: Test

In this module, we drill into
Test and Evaluate
This addresses the “How?”
question:

How will you test those
things?

Context Slide. Avoid
spending too much time
here: spend enough time to
give the students a high-
level understanding.
Answer any related
questions they have, then
move on.

The main point is to briefly
explain the context and
scope of this module
relative to the rest of the
course.

Explain that the Test and
Evaluate Workflow Detail
will be delivered in two
parts: the first focusing on
Test Techniques, the
second on Evaluating the
results of the Tests.

Explain briefly that Test &
Evaluate is the core RUP
Workflow Detail for the
Software Tester. Relate it
back to the Define
Evaluation Mission
Workflow Detail in which
Mission and Test Approach
were discussed.

The purpose of this workflow detail is to achieve appropriate breadth
and depth of the test effort to enable a sufficient evaluation of the
Target Test Items — where sufficient evaluation is governed by the Test
Motivators and Evaluation Mission.

For each test cycle, this work is focused mainly on:

• Achieving suitable breadth and depth in the test and evaluation
work

This is the heart of the test cycle, doing the testing itself and analyzing
the results.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 5

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 5

Test and Evaluate – Part One: Test
This module focuses
on the activity
Implement Test
Earlier, we covered
Test-Idea Lists, which
are input here
In the next module,
we’ll cover Analyze
Test Failures, the
second half of Test
and Evaluate

Context Slide. Avoid
spending too much time
here: spend enough time to
help the students
understand the concepts
covered in this module in
relation to the previous
modules. Answer any
related questions they have,
then move on.

Explain that this module
covers the use of different
test techniques to
implement tests. Discuss
how different test ideas
may be best realized using
very different techniques.
Explain how the test ideas
discussed in the earlier
modules are key input to
selecting the appropriate
techniques.

Note that the remaining
items in this RUP workflow
detail will be covered in the
following module.

Here are the roles, activities and artifacts RUP focuses on in this work.

In earlier modules, we discussed how identifying test ideas is a useful
way to reason about tests early in the lifecycle without needing to
completely define each specific test.

In this module we’ll look at a selection of techniques that can be used
to apply those test ideas.

In the next module, we’ll talk more about evaluating the output of the
tests that have been run.

Note that diagram shows some grayed-out elements: these are
additional testing elements that RUP provides guidance for which not
covered directly in this course. You can found out more about these
elements by consulting RUP directly.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 6

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 6

Module 5 Agenda

Overview of the workflow: Test and Evaluate
Defining test techniques
Individual techniques
Using techniques together

Zip through this – where are
we in the agenda slide only.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 7

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 7

Review: Defining the Test Approach

In Module 4, we covered Test Approach
A good test approach is:

Diversified
Risk-focused
Product-specific
Practical
Defensible

The techniques you apply should follow
your test approach

In Module 4, we discussed Test Approach and mentioned techniques.
Here we’ll drill into the techniques that you might use.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 8

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 8

Discussion Exercise 5.1: Test Techniques

There are as many as 200 published testing
techniques. Many of the ideas are
overlapping, but there are common themes.
Similar sounding terms often mean different
things, e.g.:

User testing
Usability testing
User interface testing

What are the differences among these
techniques?

When people talk about test
techniques, it’s often hard to
tell what they mean. They use
different words to mean the
same thing, and the same
words to mean different things.

Class discussion exercise.
What’s the distinction among
these three?

User testing involves testing
with people who will be the
users of the product.

Usability testing looks at how
easy the product is to learn and
use. You might do this testing
with end users but many
usability tests (such as
performance tests, or counts of
the number of steps involved
to complete a task) can be
done by anyone.

User interface testing involves
testing the elements of the user
interface, such as the menus
and other controls.

They’re not mutually exclusive.
Each focuses on a different
dimension:

• The tester who does the
testing

• The risk that the testing
mitigates

• The coverage desired from
the testing

Now let’s generalize…

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 9

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 9

Dimensions of Test Techniques

Think of the testing you do in terms of five
dimensions:

Testers: who does the testing.
Coverage: what gets tested.
Potential problems: why you're testing (what
risk you're testing for).
Activities: how you test.
Evaluation: how to tell whether the test passed
or failed.

Test techniques often focus on one or two
of these, leaving the rest to the skill and
imagination of the tester.

Examples of the dimensions:

1. Testers: User testing is focused on testing by members of your
target market, people who would normally use the product.

2. Coverage: User interface testing is focused on the elements of
the user interface, such as the menus and other controls.
Focusing on this testing involves testing every UI element.

3. Potential problems: Testing for usability errors or other
problems that would make people abandon the product or be
unhappy with it.

4. Activities: Exploratory testing.

5. Evaluation: Comparison to a result provided by a known good
program, a test oracle.

Functional testing is roughly synonymous with “behavioral testing” or
“black box” testing. The fundamental idea is that your testing is
focused on the inputs that you give the program and the responses you
get from it. A wide range of techniques fit within this general
approach.

We just gave examples of the
first three.

Activity based testing –
examples here would be
GUI regression test or
exploratory testing.

Evaluation is about how you
determine whether the test
passed or failed – often this
is called the oracle (in the
Greek sense).

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 10

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 10

Test Techniques—Dominant Test Approaches

Of the 200+ published Functional Testing
techniques, there are ten basic themes.
They capture the techniques in actual practice.
In this course, we call them:

Function testing
Equivalence analysis
Specification-based testing
Risk-based testing
Stress testing
Regression testing
Exploratory testing
User testing
Scenario testing
Stochastic or Random testing

No one uses all of these techniques. Some companies focus primarily
on one of them (different ones for different companies). This is too
narrow—problems that are easy to find under one technique are much
harder to find under some others.

We’ll walk through a selection of techniques, trying to get a sense of
what it’s like to analyze a system through the eyes of a tester who
focuses on one or another of these techniques.

You might be tempted to try to add several of these approaches to
your company’s repertoire at the same time. That may not be wise.
You might be better off adding one technique, getting good at it, and
then adding the next. Many highly effective groups focus on a few of
these approaches, perhaps four, rather than trying to be excellent with
all of them.

Discussion points:
• Applicability of each

technique based on phases
in an iterative software
development lifecycle

• Multiple techniques work
• Do simple tests first.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 11

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 11

“So Which Technique Is the Best?”

Testers
Coverage

Potential problems
Activities

Evaluation

Technique A

Technique B

Technique C

Technique E

Technique F

Technique G

Technique H

Each has
strengths and
weaknesses

Think in
terms of
complement

There is no
“one true way”

Mixing
techniques
can improve
coverage

Technique D

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 12

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 12

Inception Elaboration Construction Transition

Apply Techniques According to the LifeCycle

Test Approach changes over the project
Some techniques work well in early phases;
others in later ones
Align the techniques to iteration objectives

A limited set of focused tests Many varied tests

A few components of software under test Large system under test

Simple test environment Complex test environment

Focus on architectural & requirement risks Focus on deployment risks

In Module 3, we introduced the concept of RUP phases and iterations
within the phases. In considering and planning test techniques for an
iteration, it is important to look at the techniques according to several
characteristics.

The techniques that are appropriate in early iterations may lose their
effectiveness in later iterations, when the software under test is more
robust. Similarly, techniques that are useful in late iterations may be
inefficient if applied too early.

This refers back to the
introduction to the RUP in
Module 3.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 13

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 13

Module 5 Agenda

Overview of the workflow: Test and Evaluate
Defining test techniques
Individual techniques

Function testing
Equivalence analysis
Specification-based testing
Risk-based testing
Stress testing
Regression testing
Exploratory testing
User testing
Scenario testing
Stochastic or Random testing

Using techniques together

Zip through this – where are
we in the agenda slide only.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 14

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 14

At a Glance: Function Testing

SimpleComplexity

Black box unit testingTag line

Any stageSUT readiness

VariesHarshness

Whatever worksEvaluation

Whatever worksActivities

A function does not work in isolationPotential problems

Each function and user-visible variableCoverage

AnyTesters

Test each function thoroughly, one at a
time.Objective

About these grids:

They all have the same format,
to help you compare and
contract techniques.
However, for any one of the
techniques, many of the
characteristics are secondary,
so they are in gray. The
primary characteristics are in
yellow.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 15

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 15

Strengths & Weaknesses: Function Testing

Representative cases
Spreadsheet, test each item in isolation.
Database, test each report in isolation

Strengths
Thorough analysis of each item tested
Easy to do as each function is implemented

Blind spots
Misses interactions
Misses exploration of the benefits offered by the
program.

Some function testing tasks:

• Identify the program’s features / commands

• From specifications or the draft user manual

• From walking through the user interface

• From trying commands at the command line

• From searching the program or resource files for command
names

• Identify variables used by the functions and test their
boundaries.

• Identify environmental variables that may constrain the function
under test.

• Use each function in a mainstream way (positive testing) and
push it in as many ways as possible, as hard as possible.

Many companies use a function testing approach early in testing,
to check whether the basic functionality of the program is present
and reasonably stable.

Take Home Exercise (~1 Hour)

1. Agree on a familiar part of a familiar program for everyone to use
(e.g. the Bullets and Numbering command in MS Word).

2. Break into pairs, with one computer per pair.

3. Go through the function testing tasks above and make notes.

4. Photocopy your notes, share with other teams and discuss.

This is a coverage strategy.
Depending on your process,
this may be done as part of
developer unit testing or as
part of the test team’s work.

There are strong reasons to
ensure that developers do this
well. The XUnit family of
open-source tools have
become very popular among
developers who follow
eXtreme Programming and
Agile Methods as a way of
doing function testing.

Function Testing is a good
initial test technique to ensure
that you catch simple defects.
Using this strategy, you can
say, “I don’t know if this
product is any good, but none
of the components is
obviously broken.” The
weakness is that, by itself,
function testing can miss
inconsistencies, broken
interactions, poor
performance, poor user
experience, etc.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 16

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 16

Module 5 Agenda

Overview of the workflow: Test and Evaluate
Defining test techniques
Individual techniques

Function testing
Equivalence analysis
Specification-based testing
Risk-based testing
Stress testing
Regression testing
Exploratory testing
User testing
Scenario testing
Stochastic or Random testing

Using techniques together

Zip through this – where are
we in the agenda slide only.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 17

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 17

At a Glance: Equivalence Analysis (1/2)

Partitioning, boundary analysis, domain
testingTag line

Data, configuration, error handlingPotential problems

All data fields, and simple combinations
of data fields. Data fields include input,
output, and (to the extent they can be
made visible to the tester) internal and
configuration variables

Coverage

AnyTesters

There are too many test cases to run.
Use stratified sampling strategy to
select a few test cases from a huge
population.

Objective

Glenford J. Myers described equivalence analysis in The Art of Software
Testing (1979). It is an essential technique in the arsenal of virtually
every professional tester.

To quote from RUP:

Equivalence partitioning is a technique for reducing the required
number of tests. For every operation, you should identify the
equivalence classes of the arguments and the object states. An
equivalence class is a set of values for which an object is
supposed to behave similarly. For example, a Set has three
equivalence classes: empty, some element, and full.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 18

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 18

At a Glance: Equivalence Analysis (2/2)

SimpleComplexity

Any stageSUT readiness

Designed to discover harsh single-variable
tests and harsh combinations of a few
variables

Harshness

Determined by the dataEvaluation

Divide the set of possible values of a field into
subsets, pick values to represent each subset.
Typical values will be at boundaries. More
generally, the goal is to find a “best
representative” for each subset, and to run
tests with these representatives.
Advanced approach: combine tests of several
“best representatives”. Several approaches to
choosing optimal small set of combinations.

Activities

Prof. Kaner draws this comparison:

Public opinion polls like Gallup apply the method of stratified
sampling. Pollsters can call up 2000 people across the US and
predict with some accuracy the results of the election. It’s not a
random sample. They subdivide the population into equivalence
classes. It’s not just people who make lots of money, people who
make a fair amount of money, people who don’t make quite as
much, and people who really should make a lot more. That’s one
dimension, but we also have where people live, what their gender is,
what their age is, what their race is, and what kind of car they drive
as other variables. But we end up picking somebody who is a point
on many different places – this kind of car, that age, and so forth,
and we say they represent a bunch of other people who have this
kind of car or this kind of income group, and so forth. What you
want as a representative -- the best representative from the point of
view of pollsters -- is the most typical representative, the one who
would vote the way most of them would vote.

They’re dividing the world 3 or 4 or 5 dimensionally, but they still
end up with equivalence classes. And then they call up their list of
2000 great representatives and weight them according to how often
that subgroup fits into the population and then predict on what
these folks say what the whole subgroup would do. They actually
take more than one representative from each subgroup just in case.

That’s called stratified sampling. You divide your population into
different strata, into different layers, and you make sure you sample
from each one. We’re doing stratified sampling when we do
equivalence class analysis. These strata are just equivalence classes.
The core difference between testing and Gallup-poll-type sampling is
that, when we pick somebody in this case, we’re not looking for the
test case that is most like everybody else, we’re looking for the one
most likely to show a failure.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 19

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 19

Strengths & Weaknesses: Equivalence Analysis

Representative cases
Equivalence analysis of a simple numeric field.
Printer compatibility testing (multidimensional variable,
doesn’t map to a simple numeric field, but stratified
sampling is essential)

Strengths
Find highest probability errors with a relatively small set
of tests.
Intuitively clear approach, generalizes well

Blind spots
Errors that are not at boundaries or in obvious special
cases.
The actual sets of possible values are often
unknowable.

Some of the Key Tasks

If you wanted to practice your domain testing skills, here are things
that you would practice:

• Partitioning into equivalence classes

• Discovering best representatives of the sub-classes

• Combining tests of several fields

• Create boundary charts

• Find fields / variables / environmental conditions

• Identify constraints (non-independence) in the relationships
among variables.

Ideas for Exercises

• Find the biggest / smallest accepted value in a field

• Find the biggest / smallest value that fits in a field

• Partition fields

• Read specifications to determine the actual boundaries

• Create boundary charts for several variables

• Create standard domain testing charts for different types of
variables

• For finding variables, see notes on function testing

Further reading

The classic issue with Equivalence Analysis is combinatorial explosion –
you get too many test cases. One technique worth learning for
reducing the combinations is All Pairs. See Lessons Learned, pp. 52-
58.

This is a stratified sampling
technique.

continued…

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 20

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 20

Optional Exercise 5.2: GUI Equivalence Analysis

Pick an app that you know and some dialogs
MS Word and its Print, Page setup, Font format dialogs

Select a dialog
Identify each field, and for each field
• What is the type of the field (integer, real, string, ...)?
• List the range of entries that are “valid” for the field
• Partition the field and identify boundary conditions
• List the entries that are almost too extreme and too

extreme for the field
• List a few test cases for the field and explain why the

values you chose are the most powerful
representatives of their sets (for showing a bug)

• Identify any constraints imposed on this field by other
fields

Optional Exercise

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 21

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 21

Optional Exercise 5.3: Data Equivalence

The program reads three integer values
from a card. The three values are
interpreted as representing the lengths of
the sides of a triangle. The program prints a
message that states whether the triangle is
scalene, isosceles, or equilateral.

From Glenford J. Myers, The Art of Software Testing (1979)

Write a set of test cases that would
adequately test this program.

Optional Exercise

Myers’ Triangle is probably the best known example of an equivalence
problem. It is typical of the cases one would examine for pure data
analysis.

It is also characteristic of the analysis you would do for API testing,
where a function takes a certain number of arguments and issues a
return value.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 22

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 22

Exercise 5.3: Myers’ Answers

Test case for a valid scalene triangle
Test case for a valid equilateral triangle
Three test cases for valid isosceles triangles

(a=b, b=c, a=c)
One, two or three sides has zero value (5 cases)
One side has a negative
Sum of two numbers equals the third (e.g. 1,2,3)

Invalid b/c not a triangle (tried with 3 permutations
a+b=c, a+c=b, b+c=a)

Sum of two numbers is less than the third
(e.g. 1,2,4) (3 permutations)

Non-integer
Wrong number of values (too many, too few)

List 10 tests that you’d run that aren’t in Myers’ list:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 23

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 23

Optional Exercise 5.4: Numeric Range with Output

The program:
K = I * J
I, J and K are integer variables

Write a set of test cases that would
adequately test this program

Exercise guidelines:

There are three exercises on
equivalence classes. Pick
one to use in class and
recommend the others as
take-home assignments.

Discussions are in the
accompanying word doc.

Optional Exercise

This is a typical case with a broad range of values with issues of data
type. It is applicable for testing at the GUI or the API.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 24

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 24

Module 5 Agenda

Overview of the workflow: Test and Evaluate
Defining test techniques
Individual techniques

Function testing
Equivalence analysis
Specification-based testing
Risk-based testing
Stress testing
Regression testing
Exploratory testing
User testing
Scenario testing
Stochastic or Random testing

Using techniques together

Zip through this – where are
we in the agenda slide only.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 25

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 25

At a Glance: Specification-Based Testing

Depends on the specComplexity

AnyTesters

Verify every claimTag line

As soon as modules are availableSUT readiness
Depends on the specHarshness

Does behavior match the spec?Evaluation

Write & execute tests based on the spec’s.
Review and manage docs & traceability

Activities

Mismatch of implementation to specPotential
problems

Documented reqts, features, etc.Coverage

Check conformance with every statement in
every spec, requirements document, etc.

Objective

Common Tasks in Spec-Driven Testing

• Review specifications for

• Ambiguity

• Adequacy (it covers the issues)

• Correctness (it describes the program)

• Content (not a source of design errors)

• Testability support

• Create traceability matrices

• Document management (spec versions, file comparison utilities for
comparing two spec versions, etc.)

• Participate in review meetings

Ideas for Mixing Techniques

Medical device and software makers provide an interesting example of
a mixed strategy involving specification-based testing. The Food and
Drug Administration requires that there be tests for every claim made
about the product. Those tests are normally documented in full detail,
and often automated.

However, this is a minimum set, not the level of testing most
companies use. Even if the product meets FDA standards, it may be
unsafe. The company will therefore run many additional tests, often
exploratory. These don’t have to be reported to the FDA unless they
expose defects. (In which case, the tests are probably added to the
regression test suite.)

If you specify what your
product is, then you need
spec-driven tests. You’d be
crazy not to test that the
claims you make are true.
(And you’d be creating a
business problem for your
company.)

This is not all the testing you
do, but it is not testing that
you can skip.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 26

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 26

Strengths & Weaknesses: Spec-Based Testing

Representative cases
Traceability matrix, tracks test cases associated with
each specification item.
User documentation testing

Strengths
Critical defense against warranty claims, fraud charges,
loss of credibility with customers.
Effective for managing scope / expectations of
regulatory-driven testing
Reduces support costs / customer complaints by
ensuring that no false or misleading representations are
made to customers.

Blind spots
Any issues not in the specs or treated badly in the
specs /documentation.

Some of the Skills Involved in Spec-Based Testing

• Understand the level of generality called for when testing a spec
item. For example, imagine a field X:

• We could test a single use of X

• Or we could partition possible values of X and test boundary
values

• Or we could test X in various scenarios

• Which is the right one?

• Ambiguity analysis

• Richard Bender teaches this well. If you can’t take his course,
you can find notes based on his work in Rodney Wilson’s
Software RX: Secrets of Engineering Quality Software

• Another book provides an excellent introduction to the ways
in which statements can be ambiguous and provides lots of
sample exercises: Cecile Cyrul Spector, Saying One Thing,
Meaning Another : Activities for Clarifying Ambiguous Language

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 27

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 27

Traceability Tool for Specification-Based Testing

XXTest 6

XXTest 5

XXTest 4

XXXTest 3

XXTest 2

XXXTest 1

Stmt 5Stmt 4Stmt 3Stmt 2Stmt 1

The Traceability Matrix

The traceability matrix is a useful chart for showing what variables (or
functions or specification items) are covered by what tests.

• The columns can show any type of test item, such as a function, a
variable, an assertion in a specification or requirements document,
a device that must be tested, any item that must be shown to have
been tested.

• The rows are test cases.

• The cells show which test case tests which items.

• If a feature changes, you can quickly see which tests must be
reanalyzed, probably rewritten.

• In general, you can trace back from a given item of interest to the
tests that cover it.

• This doesn’t specify the tests, it merely maps their coverage.

The variables might be
requirements, documentation
claims, contract items,
whatever.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 28

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 28

Optional Exercise 5.5: What “Specs” Can You Use?

Challenge:
Getting information in the absence of a spec
What substitutes are available?

Example:
The user manual – think of this as a commercial
warranty for what your product does.

What other “specs” can you/should you be
using to test?

Optional Exercise

Think about standards or expert documents as sources. Imagine you’re
testing a website. Consider the difference between saying. “I can’t
navigate…” and saying “This site violates these principles of Jakob
Nielsen’s Designing Web Usability…”

Generally respected texts or standards may not necessarily be for your
project, but they are useful.

For example, if you criticize some aspect of the user interface, your
criticism might be dismissed as “just your opinion.” But if you make
the same criticism and then show that this aspect of the UI doesn’t
conform to a published UI design guidelines document for your
platform (there are several books available), the criticism will be taken
more seriously. Even if the programmers and marketers don’t fix the
problem that you identified, they will evaluate your report of the
problem as credible and knowledgeable.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 29

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 29

Exercise 5.5—Specification-Based Testing

Here are some ideas for sources that you can
consult when specifications are incomplete or
incorrect.

Software change memos that come with new builds of
the program
User manual draft (and previous version’s manual)
Product literature
Published style guide and UI standards

For more, see the Notes on this page of the
Course Notes.

No specification???

Companies vary in the ways they develop software. Even companies
that follow the Rational Unified Process will adapt RUP to their needs,
and they may not do everything that you might expect them to do.

Some companies write very concise specifications, or very incomplete
ones, or they don’t update their specs as the project evolves.

Testers have to know how to deal with the project as it is. Sometimes
you will be able to influence the fundamental development style of the
project, but often, you will have limited influence. In those cases, you
still have to know how to do an effective job of testing.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 30

Instructor Notes:

Sources of information for spec-based testing

• Whatever specs exist

• Software change memos that come with new builds of the program

• User manual draft (and previous version’s manual)

• Product literature

• Published style guide and UI standards

• Published standards (such as C-language)

• 3rd party product compatibility test suites

• Published regulations

• Internal memos (e.g. project mgr. to engineers, describing the
feature definitions)

• Marketing presentations, selling the concept of the product to
management

• Bug reports (responses to them)

• Reverse engineer the program.

• Interview people, such as

• development lead, tech writer, customer service, subject matter
experts, project manager

• Look at header files, source code, database table definitions

• Specs and bug lists for all 3rd party tools that you use

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 30

Exercise 5.5—Specification-Based Testing

-- Continued (see Notes on handout)

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 31

Instructor Notes:

Sources of information for spec-based testing (continued)

• Prototypes, and lab notes on the prototypes

• Interview development staff from the last version.

• Look at customer call records from the previous version. What bugs
were found in the field?

• Usability test results

• Beta test results

• Ziff-Davis SOS CD and other tech support CD’s (These are
answerbooks sold to help desks), for bugs in your product and
common bugs in your niche or on your platform

• BugNet magazine / web site for common bugs, and other bug
reporting websites.

• Localization guide (probably one that is published, for localizing
products on your platform.)

• Get lists of compatible equipment and environments from Marketing
(in theory, at least.)

• Look at compatible products, to find their failures (then look for
these in your product), how they designed features that you don’t
understand, and how they explain their design. See listserv’s, NEWS,
BugNet, etc.

• Exact comparisons with products you emulate

• Content reference materials (e.g. an atlas to check your on-line
geography program)

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 31

Exercise 5.5—Specification-Based Testing

-- Continued (see Notes on handout)

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 32

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 32

Module 5 Agenda

Overview of the workflow: Test and Evaluate
Defining test techniques
Individual techniques

Function testing
Equivalence analysis
Specification-based testing
Risk-based testing
Stress testing
Regression testing
Exploratory testing
User testing
Scenario testing
Stochastic or Random testing

Using techniques together

Zip through this – where are
we in the agenda slide only.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 33

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 33

Definitions—Risk-Based Testing

Three key meanings:
1. Find errors (risk-based approach to the technical

tasks of testing)
2. Manage the process of finding errors (risk-based

test management)
3. Manage the testing project and the risk posed by

(and to) testing in its relationship to the overall
project (risk-based project management)

We’ll look primarily at risk-based testing (#1),
proceeding later to risk-based test management.
The project management risks are very
important, but out of scope for this class.

Here’s an everyday analogy for thinking about risk based testing.

Hazard:

A dangerous condition (something that could trigger an accident)

Risk:

Possibility of suffering loss or harm (probability of an accident
caused by a given hazard).

Accident:

A hazard is encountered, resulting in loss or harm.

A term that is sometimes used for this is FMEA – Failure Mode Effects
Analysis. In FMEA, you start with a list of the ways that a product could
fail. These are the failure modes. Next you ask what the effects of the
failure could be. Based on that analysis, you decide how to focus your
testing and what problems to look for.

Many of us who think about testing in terms of risk, analogize testing of
software to the testing of theories. Karl Popper, in his famous essay
Conjectures and Refutations, lays out the proposition that a scientific
theory gains credibility by being subjected to (and passing) harsh tests
that are intended to refute the theory.

We can gain confidence in a program by testing it harshly. (We gain
confidence if it passes our best tests). Subjecting a program to easy tests
doesn’t tell us much about what will happen to the program in the
field.

In risk-based testing, we create harsh tests for vulnerable areas of the
program.

This is a different notion of risk
than the project manager’s
view of risk. Project Managers
think in terms of what’s the
risk that we’ll be over budget,
miss the deadlines, etc. Those
are real considerations, but are
not what we mean here.

Here we’re talking about:
What kind of defects are
likely to be hidden in the
software under test and what
is their impact?

Everyday analogy:

Hazard – ice on the sidewalk
Risk – someone could fall
Accident – someone falls and
breaks a hip

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 34

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 34

At a Glance: Risk-Based Testing

AnyComplexity

Find big bugs firstTag line

Any stageSUT readiness
HarshHarshness

VariesEvaluation

Use qualities of service, risk heuristics and
bug patterns to identify risksActivities

Identifiable risksPotential problems
By identified riskCoverage
AnyTesters

Define, prioritize, refine tests in terms of
the relative risk of issues we could test forObjective

Examples of Risk-Based Testing Tasks

• Identify risk factors (hazards: ways in which the program could go
wrong)

• For each risk factor, create tests that have power against it.

• Assess coverage of the testing effort program, given a set of risk-
based tests. Find holes in the testing effort.

• Build lists of bug histories, configuration problems, tech support
requests and obvious customer confusions.

• Evaluate a series of tests to determine what risk they are testing for
and whether more powerful variants can be created.

Here’s one way: Risk-Based Equivalence Class Analysis

Our working definition of equivalence:

• Two test cases are equivalent if you expect the same result from
each.

This is fundamentally subjective. It depends on what you expect. And
what you expect depends on what errors you can anticipate:

• Two test cases can only be equivalent by reference to a specifiable
risk.

Two different testers will have different theories about how programs
can fail, and therefore they will come up with different classes.

A boundary case in this system is a “best representative.”

• A best representative of an equivalence class is a test that is at least
as likely to expose a fault as every other member of the class.

Risk-based testing is usually
not the first testing technique
that you apply.

By the time we get to risk-
based testing, we’ll have used
other techniques (like function
testing and spec-based testing).
We’ll have plenty of evidence
that the software performs as it
is supposed to in theory.
Confirming it further adds no
new information.

Risk-based testing should be
an important part of what you
do, but you need to combine
it with systematic, coverage
based approaches (function
testing, spec testing).

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 35

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 35

Strengths & Weaknesses: Risk-Based Testing

Representative cases
Equivalence class analysis, reformulated.
Test in order of frequency of use.
Stress tests, error handling tests, security tests.
Sample from predicted-bugs list.

Strengths
Optimal prioritization (if we get the risk list right)
High power tests

Blind spots
Risks not identified or that are surprisingly more likely.
Some “risk-driven” testers seem to operate subjectively.
• How will I know what coverage I’ve reached?
• Do I know that I haven’t missed something critical?

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 36

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 36

Workbook Page—Risks in Qualities of Service

Quality Categories:
Accessibility
Capability
Compatibility
Concurrency
Efficiency
Localizability
Maintainability
Performance
Portability
Recoverability
Installability and uninstallability -- Conformance to standards
Reliability -- Scalability -- Security
Supportability -- Testability -- Usability

Each quality category is a risk
category, as in:
“the risk of unreliability.”

Take-Home Exercises
The intent of this list of exercises is to illustrate the thinking that risk-
based testers use. You can do these at work, after the course either
alone or, preferably, in pairs with another tester.

• List ways that the program could fail. For each case:

• Describe two ways to test for that possible failure

• Explain how to make your tests more powerful against that
type of possible failure

• Explain why your test is powerful against that hazard.

• Given a list of test cases

• Identify a hazard that the test case might have power against

• Explain why this test is powerful against that hazard.
• Collect or create some test cases for the software under test. Make

a variety of tests:
• Mainstream tests that use the program in “safe” ways
• Boundary tests
• Scenario tests
• Wandering walks through the program
• If possible, use tests the students have suggested previously.

• For each test, ask:
• How will this test find a defect?
• What kind of defect did the test author probably have in

mind?
• What power does this test have against that kind of defect? Is

there a more powerful test? A more powerful suite of tests?

These exercises were not
intended for in-class use. The
setup requires you to have a
program under test, that the
class knows and is thinking
about how to test.

They are here for practice
when the students go home, to
illustrate some of the ways that
risk-focused testers do their
analyses.

If you decide to do the first
(and simplest) of the exercises
in-class:

• Before class starts, choose
your product and get a list
of ways that products like
this fail. If you’re teaching
at one company, get
examples of bugs found in
testing (for example, bugs
found in previous versions
if the current version is in
testing) or bugs missed in
testing but found by
customers.

• Divide the class into small
groups. This works well
with pairs or triples.

• Give each group a list of 3
to 5 ways the program
could fail and let them
pick 2 of these to analyze.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 37

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 37

Workbook Page—Heuristics to Find Risks (1/2)

Risk Heuristics: Where to look for errors
New things: newer features may fail.

New technology: new concepts lead to new mistakes.

Learning Curve: mistakes due to ignorance.

Changed things: changes may break old code.

Late change: rushed decisions, rushed or demoralized
staff lead to mistakes.

Rushed work: some tasks or projects are chronically
underfunded and all aspects of work quality suffer.

Here are some more risk heuristics to consider:

• Tired programmers: long overtime over several weeks or months
yields inefficiencies and errors

• Other staff issues: alcoholic, mother died, two programmers who
won’t talk to each other (neither will their code)…

• Just slipping it in: pet feature not on plan may interact badly with
other code.

• N.I.H.: (Not invented here) external components can cause
problems.

• N.I.B.: (Not in budget) Unbudgeted tasks may be done shoddily.

• Ambiguity: ambiguous descriptions (in specs or other docs) can
lead to incorrect or conflicting implementations.

• Conflicting requirements: ambiguity often hides conflict, result is
loss of value for some person.

• Unknown requirements: requirements surface throughout
development. Failure to meet a legitimate requirement is a failure
of quality for that stakeholder.

These heuristics are adapted from a course developed by James Bach,
and reprinted in Lessons Learned, p. 61-62.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 38

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 38

Workbook Page—Heuristics to Find Risks (2/2)

Risk Heuristics: Where to look for errors
Complexity: complex code may be buggy.
Bugginess: features with many known bugs may also
have many unknown bugs.
Dependencies: failures may trigger other failures.
Untestability: risk of slow, inefficient testing.
Little unit testing: programmers find and fix most of their
own bugs. Shortcutting here is a risk.
Little system testing so far: untested software may fail.
Previous reliance on narrow testing strategies: (e.g.
regression, function tests), can yield a backlog of errors
surviving across versions.

more risk heuristics (continued):

• Evolving requirements: people realize what they want as the product
develops. Adhering to a start-of-the-project requirements list may
meet contract but fail product. (check out
http//www.agilealliance.org/)

• Weak testing tools: if tools don’t exist to help identify / isolate a class
of error (e.g. wild pointers), the error is more likely to survive to
testing and beyond.

• Unfixability: risk of not being able to fix a bug.

• Language-typical errors: such as wild pointers in C. See

• Bruce Webster, Pitfalls of Object-Oriented Development

• Michael Daconta et al. Java Pitfalls

• Criticality: severity of failure of very important features.

• Popularity: likelihood or consequence if much used features fail.

• Market: severity of failure of key differentiating features.

• Bad publicity: a bug may appear in PC Week.

• Liability: being sued.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 39

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 39

Workbook Page—Bug Patterns As a Source of Risks

Testing Computer Software laid out a set of 480
common defects. To use these:

Find a defect in the list
Ask whether the software under test could have this
defect
If it is theoretically possible that the program could have
the defect, ask how you could find the bug if it was
there.
Ask how plausible it is that this bug could be in the
program and how serious the failure would be if it was
there.
If appropriate, design a test or series of tests for bugs of
this type.

Use the web: www.bugnet.com

Prof. Kaner, senior author of Testing Computer Software, says:

Too many people start and end with the TCS bug list. It is outdated.
It was outdated the day it was published. And it doesn’t cover the
issues in your system. Building a bug list is an ongoing process that
constantly pays for itself.

Here’s an example and further discussion from Hung Nguyen (co-
author of Testing Computer Software):

This problem came up in a client/server system. The system sends
the client a list of names, to allow verification that a name the client
enters is not new.

Client 1 and 2 both want to enter a name and client 1 and 2 both
use the same new name. Both instances of the name are new
relative to their local compare list and therefore, they are accepted,
and we now have two instances of the same name.

As we see these, we develop a library of issues. The discovery
method is exploratory, requires sophistication with the underlying
technology.

Capture winning themes for testing in charts or in scripts-on-their-
way to being automated.

There are plenty of sources to check for common failures in the
common platforms, such as www.bugnet.com and www.cnet.com

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 40

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 40

Workbook Page—Risk-Based Test Management

Project risk management involves
Identification of the different risks to the project (issues
that might cause the project to fail or to fall behind
schedule that cost too much or dissatisfy customers or
other stakeholders)
Analysis of the potential costs associated with each risk
Development of plans and actions to reduce the
likelihood of the risk or the magnitude of the harm
Continuous assessment or monitoring of the risks (or
the actions taken to manage them)

Useful material free at http://seir.sei.cmu.edu
http://www.coyotevalley.com (Brian Lawrence)
Good paper by Stale Amland, Risk Based Testing
and Metrics, in appendix.

Common Tasks

• List all areas of the program that could require testing

• On a scale of 1-5, assign a probability-of-failure estimate to each

• On a scale of 1-5, assign a severity-of-failure estimate to each

• For each area, identify the specific ways that the program might fail
and assign probability-of-failure and severity-of-failure estimates for
those

• Prioritize based on estimated risk

• Develop a stop-loss strategy for testing untested or lightly-tested
areas, to check whether there is easy-to-find evidence that the areas
estimated as low risk are not actually low risk.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 41

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 41

Optional Exercise 5.6: Risk-Based Testing

You are testing Amazon.com
(Or pick another familiar application)

First brainstorm:
What are the functional areas of the app?

Then evaluate risks:
• What are some of the ways that each of these

could fail?
• How likely do you think they are to fail? Why?
• How serious would each of the failure types be?

Optional Exercise

Optional Exercise:

Suppose you were testing the
Amazon.com Web
application.

First, break down the
functional areas of the
application. Try this as a
brainstorm, but if the class gets
stuck, here are some examples
of the functions:

• Shopping cart
• Credit card processing
• Shipping
• Tracking of shipment

history
• Tracking of customer

purchase history
• Creation and retention of

customer search pages
• Friends and family list
• Special discounts
• Search (for books)
• Used vs new books
• Advance ordering
• Publisher and customer

reviews
• Ordering of used books

that are not yet in stock

Now work through the list.
What are some of the ways
that each of these could fail?
How likely do you think they
are to fail? Why? How serious
would each of the failure types
be?
Then collect the ideas and
evaluate each area in terms of
probability and probable
severity of failure.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 42

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 42

Module 5 Agenda

Overview of the workflow: Test and Evaluate
Defining test techniques
Individual techniques

Function testing
Equivalence analysis
Specification-based testing
Risk-based testing
Stress testing
Regression testing
Exploratory testing
User testing
Scenario testing
Stochastic or Random testing

Using techniques together

Zip through this – where are
we in the agenda slide only.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 43

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 43

At a Glance: Stress Testing

VariesComplexity

Overwhelm the productTag line

Late stageSUT readiness
ExtremeHarshness

VariesEvaluation
SpecializedActivities
Error handling weaknessesPotential problems
LimitedCoverage
SpecialistsTesters

Learn what failure at extremes tells
about changes needed in the
program’s handling of normal cases

Objective

There are a few different definitions of stress testing. This one is
focused on doing things that are so difficult for the program to handle
that it will eventually fail.

• How does it fail? Does the program handle the failure graciously?

• Is that how and when it should fail?

• Are there follow-up consequences of this failure? If we kept using
the program, what would happen?

This is a specialist’s approach. For example,

• Some security testing experts use this to discover what holes are
created in the system when part of the system is taken out of
commission.

• Giving the program extremely large numbers is a form of stress
testing. Crashes that result from these failures are often dismissed
by programmers, but many break-ins start by exploiting a buffer
over-run. For more on this approach, see James Whittaker, How to
Break Software (2002).

• Some people use load testing tools to discover functional
weaknesses in the program. Logic errors sometimes surface as the
program gets less stable (because of the high load and the odd
patterns of data that the program has to deal with during high
load.)

• This is an extreme form of risk-based testing.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 44

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 44

Strengths & Weaknesses: Stress Testing

Representative cases
Buffer overflow bugs
High volumes of data, device connections, long
transaction chains
Low memory conditions, device failures, viruses, other
crises
Extreme load

Strengths
Expose weaknesses that will arise in the field.
Expose security risks.

Blind spots
Weaknesses that are not made more visible by stress.

This is what hackers do when they pummel your site with denial of
service attacks. A good vision for stress testing is that the nastiest and
most skilled hacker should be a tester on your team, who uses the
technique to find functional problems.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 45

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 45

Module 5 Agenda

Overview of the workflow: Test and Evaluate
Defining test techniques
Individual techniques

Function testing
Equivalence analysis
Specification-based testing
Risk-based testing
Stress testing
Regression testing
Exploratory testing
User testing
Scenario testing
Stochastic or Random testing

Using techniques together

Zip through this – where are
we in the agenda slide only.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 46

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 46

At a Glance: Regression Testing

VariesComplexity

Automated testing after changesTag line

For unit – early; for GUI - lateSUT readiness

VariesHarshness

VariesEvaluation

Create automated test suites and run against
every (major) buildActivities

Side effects of changes
Unsuccessful bug fixes

Potential
problems

VariesCoverage

VariesTesters
Detect unforeseen consequences of changeObjective

Regression testing refers to the automated testing of the SUT after
changes. The name implies that its primary function is to prevent
regression, i.e. the reappearance of a defect previously fixed, but in
practice, the term is widely used to refer to any test automation that
repeats the same tests over and over.

Regression testing is most effective when combined with other testing
techniques, which we’ll discuss at the end of this module.

Where should you use regression testing? Where efficiency of
executing the tests time and time again is a primary concern. For
example:

• Build Verification Tests (BVTs or “smoke tests”) are a form of
regression testing used to determine whether to accept a build
into further testing and are covered in Module 8 of the course.

• Configuration Tests, where you check that an application
functions identically with different operating systems, database
servers, web servers, web browsers, etc., are another example
where you need highly efficient execution.

Pay careful attention to the stability of the interfaces that you use to
drive the SUT. Testing through an API is generally a better strategy
than testing through the GUI, for two reasons.

1. GUIs change much more frequently than APIs, as usability issues
are discovered and improvements are made.

2. It’s usually much easier to achieve high coverage of the
underlying program logic by using the API. The majority of the
code in any modern system deals with error conditions that may
be hard to trigger through the GUI alone.

If you have a highly stateful application, you may want to combine
tests where you stimulate through the API and observe at the GUI, or
vice-versa.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 47

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 47

Strengths & Weaknesses—Regression Testing
Representative cases

Bug regression, old fix regression, general functional
regression
Automated GUI regression test suites

Strengths
Cheap to execute
Configuration testing
Regulator friendly

Blind spots
“Immunization curve”
Anything not covered in the regression suite
Cost of maintaining the regression suite

Lessons Learned, Chapter 5, has useful guidance for regression testing.

In planning regression testing, be sure that you understand the extent
to which you can vary the tests effectively for coverage and track the
variance in the test results.

• Use different sequences (see scenario testing)

• Apply data for different equivalence class analyses

• Vary options and program settings, and

• Vary configurations.

Carefully plan the testability of the software under test to match the
capabilities of any test tool you apply.

Do testing that essentially focuses on similar risks from build to build
but not necessarily with the identical test each time.

There are a few cases (such as BVTs) where you may want to limit the
variation.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 48

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 48

Module 5 Agenda

Overview of the workflow: Test and Evaluate
Defining test techniques
Individual techniques

Function testing
Equivalence analysis
Specification-based testing
Risk-based testing
Stress testing
Regression testing
Exploratory testing
User testing
Scenario testing
Stochastic or Random testing

Using techniques together

Zip through this – where are
we in the agenda slide only.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 49

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 49

At a Glance: Exploratory Testing

VariesComplexity

Simultaneous learning, planning, and
testingTag line

Medium to late: use cases must workSUT readiness
VariesHarshness

VariesEvaluation
Learn, plan, and test at the same timeActivities

Everything unforeseen by planned
testing techniquesPotential problems

Hard to assessCoverage
ExplorersTesters

Simultaneously learn about the
product and about the test strategies
to reveal the product and its defects

Objective

With exploratory testing you simultaneously:
• Learn about the product
• Learn about the market
• Learn about the ways the product could fail
• Learn about the weaknesses of the product
• Learn about how to test the product
• Test the product
• Report the problems
• Advocate for repairs
• Develop new tests based on what you have learned so far.

Everyone does some exploratory testing. For example, whenever you
do follow-up testing to try to narrow the conditions underlying a
failure or to try to find a more serious variation of a failure, you are
doing exploratory testing. Most people do exploratory testing while
they design tests. If you test the program while you design tests, trying
out some of your approaches and gathering more detail about the
program as you go, you are exploring.

If you do testing early in the process – during elaboration or in the first
few iterations of implementation – the product is still in an embryonic
state. Many artifacts that would be desirable for testing are just not
available yet, and so the testers either have to not do the testing (this
would be very bad) or learn as they go.

Acknowledgement: Many of these slides are derived from material
given to us by James Bach (www.satisfice.com) and many of the ideas
in these notes were reviewed and extended at the 7th Los Altos
Workshop on Software Testing. We appreciate the assistance of the
LAWST 7 attendees: Brian Lawrence, III, Jack Falk, Drew Pritsker, Jim
Bampos, Bob Johnson, Doug Hoffman, Cem Kaner, Chris Agruss, Dave
Gelperin, Melora Svoboda, Jeff Payne, James Tierney, Hung Nguyen,
Harry Robinson, Elisabeth Hendrickson, Noel Nyman, Bret Pettichord,
& Rodney Wilson.

Every tester does Exploratory
Testing on every project,
although only some say they
do. As soon as you start
investigating a bug, you’re
doing ET.

Exploratory Testing is a great
way to determine whether X is
an area of the software to
worry about.

Some programmers are
notoriously bad at identifying
where the most risky areas are
in their own work.

NOTE: Some people
characterize exploratory
testing as random hacking by
unskilled people. And some
test groups have several
unskilled people who do
random hacking and call it
testing. They don’t do a
particularly good job.

Exploratory testing involves
constant learning and careful
thinking about the best things
to do next. It is testing with
your brain engaged, not with
your brain in neutral while
your fingers do the walking on
the keyboard.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 50

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 50

Strengths & Weaknesses: Exploratory Testing
Representative cases

Skilled exploratory testing of the full product
Rapid testing & emergency testing (including thrown-
over-the-wall test-it-today)
Troubleshooting / follow-up testing of defects.

Strengths
Customer-focused, risk-focused
Responsive to changing circumstances
Finds bugs that are otherwise missed

Blind spots
The less we know, the more we risk missing.
Limited by each tester’s weaknesses (can mitigate this
with careful management)
This is skilled work, juniors aren’t very good at it.

Doing Exploratory Testing

• Keep your mission clearly in mind.

• Distinguish between testing and observation.

• While testing, be aware of the limits of your ability to detect
problems.

• Keep notes that help you report what you did, why you did it,
and support your assessment of product quality.

• Keep track of questions and issues raised in your exploration.

Problems to Be Aware Of

• Habituation may cause you to miss problems.

• Lack of information may impair exploration.

• Expensive or difficult product setup may increase the cost of
exploring.

• Exploratory feedback loop my be too slow.

• Old problems may pop up again and again.

• High MTBF may not be achievable without well defined test
cases and procedures, in addition to exploratory approach.

The question is not whether testers should do exploratory testing
(that’s like asking whether people should breathe). Instead, we
should ask:

• How systematically should people explore?

• How visible should exploratory testing practices be in the testing
process?

• How much exploratory training should testers have?

How do you tell if someone is
a good explorer? Watch the
person troubleshoot bugs.
Look for curiosity and a
willingness to run with it.
Look for intuition and a good
understanding of the
customer.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 51

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 51

Module 5 Agenda

Overview of the workflow: Test and Evaluate
Defining test techniques
Individual techniques

Function testing
Equivalence analysis
Specification-based testing
Risk-based testing
Stress testing
Regression testing
Exploratory testing
User testing
Scenario testing
Stochastic or Random testing

Using techniques together

Zip through this – where are
we in the agenda slide only.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 52

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 52

At a Glance: User Testing

VariesComplexity

Strive for realism
Let’s try real humans (for a change)Tag line

Late; has to be fully operableSUT readiness
LimitedHarshness

User’s assessment, with guidanceEvaluation
Directed by userActivities

Items that will be missed by anyone
other than an actual userPotential problems

Very hard to measureCoverage
UsersTesters

Identify failures in the overall
human/machine/software system.Objective

Beta testing is normally defined as testing by people who are outside
of your company. These are often typical members of your market,
but they may be selected in other ways.

Beta tests have different objectives. It’s important to time and
structure your test(s) in ways that help you meet your goals:

• Expert advice—the expert evaluates the program design. It is
important to do this as early as possible, when basic changes are
still possible.

• Configuration testing—the beta tester runs the software on her
equipment, and tells you the results.

• Compatibility testing—the beta tester (possibly the manufacturer
of the other software) runs the software in conjunction with other
software, to see whether they are compatible.

• Bug hunting—the beta tester runs the software and reports
software errors.

• Usability testing—the beta tester runs the software and reports
difficulties she had using the product.

• Pre-release acceptance tests—the beta tester runs the product to
discover whether it behaves well on her system or network. The
goal is convincing the customer that the software is OK, so that
she’ll buy it as soon as it ships.

• News media reviews—some reporters want early software. They
are gratified by corporate responsiveness to their suggestions for
change. Others expect finished software and are intolerant of
pre-release bugs.

For more discussion of the diversity of beta tests, see Kaner, Falk &
Nguyen, Testing Computer Software, pp. 291-294.

User Testing is many more
things than beta testing. (We
touched on this in our earlier
exercise.)
The primary element in/goal of
user testing is bringing in an
expert from the user
community to find design
flaws.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 53

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 53

Strengths & Weaknesses—User Testing

Representative cases
Beta testing
In-house lab using a stratified sample of target market
Usability testing

Strengths
Expose design issues
Find areas with high error rates
Can be monitored with flight recorders
Can use in-house tests focus on controversial areas

Blind spots
Coverage not assured
Weak test cases
Beta test technical results are mixed
Must distinguish marketing betas from technical betas

Prof. Kaner comments:

There is a very simple example of something that we did at
Electronic Arts. We made many programs that printed in very fancy
ways on color printers. We gave you the files to print as part of the
beta, you made print outs and wrote on the back of the page what
your printer was and what your name was. If you were confused
about the settings, when we got your page back, we called you up.
We had a large population of people with a large population of
strange and expensive printers that we couldn't possibly afford to
bring in-house.

So we could tell whether it passed or failed, we also did things like
sending people parts of the product and a script to walk through
and we would be on the phone with them and say what do you
see on the screen? We wanted to do video compatibility where
they’re across the continent.

So you are relying on their eyes to be your eyes. But you’re on the
phone, you don't ask them if it looks okay, you ask them what is in
this corner? And you structure what you're going to look at If you
think you are at risk on configuration you should have some sense
of how configurations will show up the configuration failures.
Write tests to expose those, get them to your customers, and then
find out whether those tests passed or failed by checking directly
on these specific tests.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 54

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 54

Module 5 Agenda

Overview of the workflow: Test and Evaluate
Defining test techniques
Individual techniques

Function testing
Equivalence analysis
Specification-based testing
Risk-based testing
Stress testing
Regression testing
Exploratory testing
User testing
Scenario testing
Stochastic or Random testing

Using techniques together

Zip through this – where are
we in the agenda slide only.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 55

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 55

At a Glance: Scenario Testing

HighComplexity

Instantiation of a use case
Do something useful, interesting, and complexTag line

Late. Requires stable, integrated functionality.SUT readiness

VariesHarshness

AnyEvaluation

Interview stakeholders & write screenplays,
then implement testsActivities

Complex interactions that happen in real use
by experienced users

Potential
problems

Whatever stories touchCoverage
AnyTesters
Challenging cases to reflect real useObjective

Scenarios are great ways to capture realism in testing. They are much
more complex than most other techniques and they focus on end-to-
end experiences that users really have.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 56

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 56

Strengths & Weaknesses: Scenario Testing

Representative cases
Use cases, or sequences involving combinations of use
cases.
Appraise product against business rules, customer data,
competitors’ output
Hans Buwalda’s “soap opera testing.”

Strengths
Complex, realistic events. Can handle (help with)
situations that are too complex to model.
Exposes failures that occur (develop) over time

Blind spots
Single function failures can make this test inefficient.
Must think carefully to achieve good coverage.

Scenario tests are expensive. So it’s important to get them right.
• Realism is important for credibility.
• Don’t use scenarios to find simple bugs efficiently. Scenario tests

are too complex and tied to too many features.
• Start your testing effort with simpler tests to find the simple

defects. If you start with scenario tests, you will be blocked by
simple bugs.

There’s a risk of missing coverage by relying too heavily on scenario
testing alone. A mitigation strategy for that risk is to use a traceability
matrix for assessing coverage, as we’ve shown before.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 57

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 57

Outline of a Use Case
Has one normal, basic flow (“Happy Path”)
Several alternative flows

Regular variants
Odd cases
Exceptional flows handling error situations

“Happy Path”

Workbook Page—Test Scenarios From Use Cases

Use Cases may be a good source of test scenarios. Usually, you will
want to string several use cases together as a test scenario.

Use-Case Contents
1. Brief Description
2. Flow of Events

Basic Flow of Events
Alternative Flows of Events

3. Special Requirements
4. Pre-Conditions
5. Post-Conditions
6. Extension Points
7. Relationships
8. Candidate Scenarios
9. Use-Case Diagrams
10. Other Diagrams/Enclosures

The Flow of Events of a use case contains the most important
information derived from use-case modeling work. It should describe
the use case's flow of events clearly enough for an outsider to easily
understand it. Remember the flow of events should present what the
system does, not how the system is designed to perform the required
behavior.

Use cases are a great source of
test scenarios. What is the
difference between a use case
specification and a test
scenario?

• Good test scenarios are
typically broader and
string together several
granular use cases into an
end-to-end experience.
In UML jargon, the test
use cases include or
extend the requirements
use cases.

• Good test scenarios are
built to confirm or refute
test hypotheses. Examples
of the hypotheses would
be faults of omission (e.g.
unforeseen interactions,
incomplete interface
contracts), environmental
faults, third-party
component misbehavior,
developer tunnel vision,
etc.

• Good test scenarios tend
to rely on much richer
data examples than are
available with written
requirements.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 58

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 58

Workbook Page—Scenarios Without Use Cases

Sometimes, we develop test scenarios
independently of use cases. The ideal scenario
has four characteristics:

It is realistic (e.g. it comes from actual customer or
competitor situations).
It is easy (and fast) to determine whether a test
passed or failed.
The test is complex. That is, it uses several
features and functions.
There is a stakeholder who has influence and will
protest if the program doesn’t pass this scenario.

Why develop test scenarios independently of use cases?

• Some development teams don’t do a thorough job of use case
analysis. Certainly, use cases play an important role in RUP. But
users of RUP may not adopt all of the RUP recommendations. The
testing group has to be prepared to derive test cases from
whatever information is available.

• Even if a development team creates a strong collection of use
cases, an analysis from outside of the developers’ design thinking
may expose problems that are not obvious from analysis of the use
cases. The tester, collecting data for the scenario test, may well
rely on different people’s inputs than the development team when
it developed use cases.

Some ways to trigger thinking about scenarios:

Benefits-driven: People want to achieve X. How will they do it, for the
following X’s?

Sequence-driven: People (or the system) typically does task X in an
order. What are the most common orders (sequences) of subtasks in
achieving X?

Transaction-driven: We are trying to complete a specific transaction,
such as opening a bank account or sending a message. What are the
steps, data items, outputs, displays etc.?

Get use ideas from competing product: Their docs, advertisements,
help, etc., all suggest best or most interesting uses of their products.
How would our product do these things?

Competitor driven: Hey, look at these cool documents they can
create. Look at how they display things (e.g. Netscape’s superb
handling of malformed HTML code). How do we handle this?

Customer’s forms driven: Here are the forms the customer produces.
How can we work with (read, fill out, display, verify, whatever) them?

What makes a good scenario?
• You know people do it.
• You can tell quickly

whether it passed.
• People would do these

things as a real sequence,
not the first day, but after
a few months of
experience.

• You know who cares.
There’s a person you can
go back to when you
discover the failure who
will champion the fix.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 59

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 59

Workbook Page—Soap Operas

A Soap Opera is a scenario based on real-life
client/customer experience.
Exaggerate every aspect of it. For example:

For each variable, substitute a more extreme value
If a scenario can include a repeating element, repeat it
lots of times
Make the environment less hospitable to the case
(increase or decrease memory, printer resolution, video
resolution, etc.)

Create a real-life story that combines all of the
elements into a test case narrative.

These are example soap opera scenarios from: Hans Buwalda, Soap
Opera Testing, Software Testing Analysis & Review conference,
Orlando, FL, May 2000.

Pension Fund

William starts as a metal worker for Industrial Entropy
Incorporated in 1955. During his career he becomes ill,
works part time, marries, divorces, marries again, gets 3
children, one of which dies, then his wife dies and he
marries again and gets 2 more children….

World Wide Transaction System for an international Bank

A fish trade company in Japan makes a payment to a vendor
on Iceland. It should have been a payment in Icelandic
Kronur, but it was done in Yen instead. The error is
discovered after 9 days and the payment is revised and
corrected, however, the interest calculation (value dating)…

You can skip this slide, if you’re
not comfortable with it.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 60

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 60

Optional Exercise 5.7: Soap Operas for Testing

1. Pick a familiar product
2. Define a scope of the test
3. Identify with the business environment
4. Include elements that would make things

difficult
5. Tell the story

Optional Exercise

In some classes, you’ll focus
most examples around a
sample application.
This is particularly helpful for
creating a story

• The students describe the
variables and the business
rules.

• You build the story (if you
have a talent for this type
of thing). It should be a
plausible exaggeration of
real-life and works best if
it’s humorous.

If you’re not good at creating
stories, and if you don’t have a
particularly good soap opera
handy to use as an example,
you’re best off skipping this
slide.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 61

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 61

Module 5 Agenda

Overview of the workflow: Test and Evaluate
Defining test techniques
Individual techniques

Function testing
Equivalence analysis
Specification-based testing
Risk-based testing
Stress testing
Regression testing
Exploratory testing
User testing
Scenario testing
Stochastic or Random testing

Using techniques together

Zip through this – where are
we in the agenda slide only.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 62

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 62

At a Glance: Stochastic or Random Testing (1/2)

Monkey testing
High-volume testing with new cases all
the time

Tag line

Have the computer create, execute,
and evaluate huge numbers of tests.

The individual tests are not all that
powerful, nor all that compelling.
The power of the approach lies in
the large number of tests.
These broaden the sample, and
they may test the program over a
long period of time, giving us insight
into longer term issues.

Objective

The essence of this technique is that, while the strategy is designed by
a human; the individual test cases are generated by machine. Kaner’s
Architectures of Test Automation, in your student kit, discusses this in
more detail.

Noel Nyman of Microsoft coined the term “monkey testing” and has
developed some of the best material on this subject. The name was
inspired by the teaser:

“If 12 monkeys pound on keyboards at random, how long will it
take before they re-create the works of Shakespeare?”

Nyman’s description and source code for “Freddy”, a monkey tester
used for compatibility testing at Microsoft, can be found in is the
appendix to Tom Arnold’s VT 6 Bible. For experience reports, see
Noel Nyman, “Using Monkey Test Tools,” Software Test and Quality
Engineering Magazine, January/February 2000, available at
www.stickyminds.com

Harry Robinson, also of Microsoft, has published a few papers on this
style of test generation at his site www.model-based-testing.org. In
Robinson’s terminology, the “model” is the combinatorial space and
set of algorithms used to generate tests.

“Monkey testing should not be your only testing. Monkeys don’t
understand your application, and in their ignorance they miss many
bugs.”

—Noel Nyman, “Using Monkey Test Tools,” STQE, Jan/Feb 2000

This material is just too complex
to teach in detail in an
introductory course. I suggest
that you point to Kaner’s
Architectures of Test Automation,
which you can find in the
student kit.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 63

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 63

At a Glance: Stochastic or Random Testing (2/2)

Complex to generate, but individual
tests are simpleComplexity

AnySUT readiness

Weak individual tests, but huge
numbers of themHarshness

Generic, state-basedEvaluation

Focus on test generationActivities

Crashes and exceptionsPotential problems

Broad but shallow. Problems with
stateful apps.Coverage

MachinesTesters

What do we mean by random and stochastic?

A variable that is random has a value that is basically unpredictable. If
you're talking about a set of values that are random then the set are
basically unpredictable. If the random value depends upon the
sequence, then you're not just dealing with something that is random,
you're dealing with something that is randomly changing over time --
that is a stochastic variable.

For example, if you go to Las Vegas and play Blackjack how much you
will win or lose on a given hand is a random variable, but how much is
left in your pocket is a stochastic variable. It depends not just on how
much you won or lost this time but rather on what's been going on
time after time. The Dow Jones Index is a stochastic variable. How
much it changes today is the random variable.

In high-volume random testing, where you go next depends on where
you are now and the next random variable -- it is a stochastic process.
An important theorem is that a stochastic process, that depends only
on current position and one random variable to move to the next
place, will reach every state that can theoretically be reached in that
system, if you run the process for a long enough time. You can prove
that over a long enough period you will have 100% state coverage, as
long as you can show that the states could ever be reached.

This material is just too complex
to teach in detail in an
introductory course. I suggest
that you point to Kaner’s
Architectures of Test Automation,
which you can find in the
student kit.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 64

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 64

Module 5 Agenda

Overview of the workflow: Test and Evaluate
Defining test techniques
Individual techniques
Using techniques together

Zip through this – where are
we in the agenda slide only.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 65

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 65

Combining Techniques (Revisited)

A test approach should be diversified
Applying opposite techniques can improve
coverage
Often one technique can
extend another

Testers
Coverage

Potential problems
Activities

Evaluation

Technique G

Technique A

Technique B

Technique C

Technique E

Technique F

Technique H

Technique D

Earlier in this module, the concept of of complementary techniques
was introduced. Now that you have visited the techniques in detail,
it’s useful to think about two valuable ways of combining them:

1. Using opposite techniques independently

2. Using complementary techniques together

The next two slides cover examples of each.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 66

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 66

Applying Opposite Techniques to Boost Coverage

Regression
Inputs:
• Old test cases and

analyses leading to new
test cases

Outputs:
• Archival test cases,

preferably well
documented, and bug
reports

Better for:
• Reuse across multi-

version products

Exploration
Inputs:
• models or other analyses

that yield new tests

Outputs
• scribbles and bug reports

Better for:
• Find new bugs, scout

new areas, risks, or ideas

Contrast these two techniques

Exploration Regression

Regression Testing and Exploratory Testing are perhaps the easiest
techniques to contrast. Consider the two as processes with inputs and
outputs.

The regression tester starts with test cases that he will reuse and the
motivations for those test cases. The regression tester executes those
tests, discovers some are out of date, some can be stricken, and
generates two different types of documents. 1) bug reports and 2)
improved tests. The regression tester is focused on creating materials
for reuse.

The exploratory tester, on the other hand, comes in with whatever
information is available, but not with defined test cases. The
exploratory tester does testing and makes notes in a private notebook.
From those scribbles the exploratory tester also writes bug reports. But
the scribbles in the book are not going anywhere outside this book.
There’s nothing available for reuse – just the bug reports.

Neither technique would be safe as the only approach to testing.
Applying them both, however, significantly improves the diversification
of your test approach.

The Explorer:
• Isn’t facing old test cases

(except to see what not to
do)

• Looks at use cases
• Builds (throwaway)

models
• Rapidly generates

hypotheses
• Produces personal notes
• Works very fast

An Explorer’s models are
transient, unarchived,
whiteboard sketches to
understand the system.
There’s no archival material
(other than defect reports).
The Explorer’s notes don’t
support long-term reuse,
except perhaps for cross-
training.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 67

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 67

Applying Complementary Techniques Together

Regression testing alone suffers fatigue
The bugs get fixed and new runs add little info

Symptom of weak coverage
Combine automation w/ suitable variance

E.g. Risk-based equivalence analysis

Coverage of the combination
can beat sum of the parts Equivalence

Risk-based

Regression

Another way of combining techniques is to use one technique to
extend another. For example, Regression testing is much more
effective when extended with other testing techniques than when
used in isolation. Examples of combination include…

• Equivalence analysis: There are many techniques available for
extending test automation with variable data and all regression
tools support variable data. If you have done good risk-based
equivalence analysis, and can extend function regression testing
with good test data, you can achieve the combined benefits of
those techniques.

• Function testing: XP (eXtreme Programming) advocates that
developers produce exhaustive automated unit tests that are run
after every coding task to facilitate refactoring (changing code).
Because the XP test suites are sufficiently comprehensive and are
run continuously, they provide immediate feedback of any
unforeseen breakage caused by a change. JUnit is a popular
open source tool for this.

• Specification-based testing: An important extension to spec-
based testing is the practice of Test-first Design (covered in RUP
as a developer practice and also advocated by XP). With Test-
first Design, you use tests as a primary form of requirements
specification and rerun the tests on every build to provide
immediate feedback on any breakage.

• Scenario testing: Some teams have success automating simple
scenarios and interactions. This works when you can easily
maintain the tests are are conscientious about discarding tests
that no longer add useful information. A good heurisitc is to
make sure that test maintenance cost is kept low to avoid
blocking any test development.

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 68

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 68

How To Adopt New Techniques

1. Answer these questions:
What techniques do you use in your test approach
now?
What is its greatest shortcoming?
What one technique could you add to make the
greatest improvement, consistent with a good test
approach:

• Risk-focused?
• Product-specific?
• Practical?
• Defensible?

2. Apply that additional technique until proficient
3. Iterate

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 69

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 69

Discussion 5.8: Which Techniques Should You Use

1. Break out into workgroups
2. For your team, answer the questions on

the previous slide
3. Present your findings

Principles of Software Testing for Testers Instructor Notes

Module 5 - Test and Evaluate 5 - 70

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 70

Optional Review Exercise 5.9: Characterize Testing Techniques

Stochastic testing

Scenario testing

User testing

Exploratory testing

Regression testing

Stress testing

Risk-based testing

Specification-based
testing

Equivalence analysis

Function testing

EvaluationActivitiesProblems /
Risks

CoverageTesters

Optional Take-home Exercise

• Go back through the testing techniques and characterize the
key traits of each.

• Which techniques do you use on your current project(s)?

• Which would you try next?

• Why?

Exercise guidelines

