
Parallel Processing using Parallel Processing using 
PVM on a Linux ClusterPVM on a Linux Cluster

Thomas K. GederbergThomas K. Gederberg
CENG 6532 Fall 2007CENG 6532 Fall 2007



22

What is PVM?What is PVM?
PVMPVM (Parallel Virtual Machine) is a (Parallel Virtual Machine) is a ““software system that permits a software system that permits a 
heterogeneous collection of Unix computers networked together toheterogeneous collection of Unix computers networked together to be be 
viewed by a userviewed by a user’’s program as a single parallel computers program as a single parallel computer””..11

Since the distributed computers have no shared memory, the Since the distributed computers have no shared memory, the PVMPVM system system 
uses uses Message PassingMessage Passing for data communication among the processors.for data communication among the processors.
PVMPVM and and MPIMPI (Message Passing Interface) are the two common message (Message Passing Interface) are the two common message 
passing APIpassing API’’s for distributed computing.s for distributed computing.
MPIMPI, the newer of the two API, the newer of the two API’’s, was designed for homogenous distributed s, was designed for homogenous distributed 
computers and offers higher performance.computers and offers higher performance.
PVMPVM, however, sacrifices performance for flexibility.  , however, sacrifices performance for flexibility.  PVMPVM was designed to was designed to 
run over a heterogeneous network of distributed computers.  run over a heterogeneous network of distributed computers.  PVMPVM also also 
allows for fault tolerance allows for fault tolerance –– it allows for the detection of, and reconfiguration it allows for the detection of, and reconfiguration 
for, node failures. for, node failures. 
PVMPVM includes both C and Fortran libraries.includes both C and Fortran libraries.
PVM was developed by PVM was developed by Oak Ridge National LaboratoryOak Ridge National Laboratory, the , the University of University of 
TennesseeTennessee, , Emory UniversityEmory University, and , and Carnegie Mellon UniversityCarnegie Mellon University..



33

Installing PVM in LinuxInstalling PVM in Linux
PVM is easy to install on a machine running Linux and can be insPVM is easy to install on a machine running Linux and can be installed in the users talled in the users 
home directory (does not need root or administrator privileges).home directory (does not need root or administrator privileges).
Obtain the PVM source code (latest version is 3.4.5) from the PVObtain the PVM source code (latest version is 3.4.5) from the PVM website: M website: 
http://www.csm.ornl.gov/pvm/pvm_home.htmlhttp://www.csm.ornl.gov/pvm/pvm_home.html
Unzip and Unzip and untaruntar the package the package (pvm3.4.5.tgz(pvm3.4.5.tgz) in your home directory ) in your home directory –– this will create a this will create a 
directory called directory called pvm3pvm3
Modify your startup script (.Modify your startup script (.bashrcbashrc, ., .cshrccshrc, etc.) to define:, etc.) to define:

$PVM_ROOT = $HOME/pvm3$PVM_ROOT = $HOME/pvm3
$PVM_ARCH = LINUX$PVM_ARCH = LINUX

cdcd to the to the pvm3pvm3 directorydirectory
Type Type makemake
The The makefilemakefile will build will build pvmpvm (the PVM console), (the PVM console), pvmd3 pvmd3 (the (the pvmpvm daemon), daemon), libpvm3.a libpvm3.a 
(PVM C/C++ library), (PVM C/C++ library), libfpvm3.a libfpvm3.a (PVM Fortran library), and (PVM Fortran library), and libgpvm3.alibgpvm3.a (PVM group (PVM group 
library) and places all of these files in the library) and places all of these files in the $PVM_ROOT/lib/LINUX$PVM_ROOT/lib/LINUX directory.directory.
The The makefilemakefile will also build will also build pvmgspvmgs (PVM group server) and place it in the (PVM group server) and place it in the 
$PVM_ROOT/bin/LINUX$PVM_ROOT/bin/LINUX directory.directory.



44

Configuring the ClusterConfiguring the Cluster
The Linux cluster consists of three machines running Linux (The Linux cluster consists of three machines running Linux (UbuntuUbuntu 7.04) 7.04) 
connected via a wireless router.connected via a wireless router.
Recommend using Recommend using SSHSSH (Secure Shell) rather than (Secure Shell) rather than RSHRSH (Remote Shell) as (Remote Shell) as 
the communication protocol.  Generate a public/private key on ththe communication protocol.  Generate a public/private key on the main e main 
machine and copy the key to the machine and copy the key to the ..sshssh directory on each of the remote directory on each of the remote 
machines.  This will allow for machines.  This will allow for passwordlesspasswordless communication.communication.
Install Install PVMPVM on each machine.on each machine.
In the In the ~/.pvm3~/.pvm3 directory on each machine, create a directory on each machine, create a ..rhostsrhosts file that lists the file that lists the 
name of each of the machines in the cluster (one name per line).name of each of the machines in the cluster (one name per line). The The 
/etc/host/etc/host file on each machine should list the machine name and its IP file on each machine should list the machine name and its IP 
address.address.



55

Overview of Common PVM Overview of Common PVM 
RoutinesRoutines

Process ControlProcess Control

intint tidtid = = pvm_mytidpvm_mytid()()
The routine The routine pvm_mytidpvm_mytid()() returns the returns the TIDTID (task identifier) of this process and (task identifier) of this process and 
enrolls the process into enrolls the process into PVMPVM if this is the first if this is the first PVMPVM call.call.

intint info = info = pvm_exitpvm_exit()()
The routine The routine pvm_exitpvm_exit()() tells the tells the PVMPVM daemon that this process is leaving daemon that this process is leaving PVMPVM.  .  
Typically, Typically, pvm_exitpvm_exit is called before exiting the C program.is called before exiting the C program.

intint numtnumt = = pvm_spawnpvm_spawn( char *task, char **( char *task, char **argvargv, , intint flag, char* where, flag, char* where, intint ntaskntask, , intint
**tidstids ))
The routine The routine pvm_spawnpvm_spawn()() starts up starts up ntaskntask copies of the executablecopies of the executable tasktask on the on the 
virtual machine.  virtual machine.  argvargv is a pointer to an array of arguments tois a pointer to an array of arguments to tasktask.  The .  The flagflag
argument is used to specify options such as argument is used to specify options such as wherewhere the tasks should be spawned, the tasks should be spawned, 
whether to start a debugger, or whether to generate trace data.whether to start a debugger, or whether to generate trace data.



66

Overview of Common PVM Overview of Common PVM 
Routines (continued)Routines (continued)

InformationInformation

intint tidtid = = pvm_parentpvm_parent()()
The routine The routine pvm_parentpvm_parent()() returns the TID of the process that spawned returns the TID of the process that spawned 
this task or the value of this task or the value of PvmNoParentPvmNoParent if not created by if not created by pvm_spawnpvm_spawn
(i.e., (i.e., tidtid will equal will equal PvmNoParentPvmNoParent if this process is the parent process).if this process is the parent process).

intint dtiddtid = = pvm_tidtohostpvm_tidtohost( ( intint tidtid ))
The routine The routine pvm_tidtohostpvm_tidtohost()() returns the TID of the daemon running on returns the TID of the daemon running on 
the same host asthe same host as tidtid –– useful for determining on which host a given task useful for determining on which host a given task 
is running.is running.

intint info = info = pvm_configpvm_config( ( intint **nhostnhost, , intint **narchnarch, , structstruct pvmhostinfopvmhostinfo ****hostphostp))
The routine The routine pvm_configpvm_config() () returns information about the virtual machine returns information about the virtual machine 
including the number of hosts, including the number of hosts, nhostnhost, and the number of different , and the number of different 
architectures, architectures, narchnarch.  .  hostphostp is a pointer to a user declared array of is a pointer to a user declared array of 
pvmhostinfopvmhostinfo structures.structures.



77

Overview of Common PVM Overview of Common PVM 
Routines (continued)Routines (continued)

Message PassingMessage Passing
Sending a message consists of three steps:Sending a message consists of three steps:

the send buffer must be initializedthe send buffer must be initialized
the message must be the message must be ““packedpacked”” into this bufferinto this buffer
the completed message is sentthe completed message is sent

Initializing the Send BufferInitializing the Send Buffer
intint tidtid = = pvm_initsendpvm_initsend( ( intint encoding )encoding )

The routine The routine pvm_initsendpvm_initsend() () clears any current send buffer and creates a clears any current send buffer and creates a 
new one for packing a  message.  The encoding scheme used is setnew one for packing a  message.  The encoding scheme used is set by by 
encodingencoding.  .  XDRXDR (the (the External Data RepresentationExternal Data Representation standard) encoding standard) encoding 
scheme is used by default.scheme is used by default.



88

Overview of Common PVM Overview of Common PVM 
Routines (continued)Routines (continued)

Message Passing (continued)Message Passing (continued)

Packing the DataPacking the Data

Each of the following routines packs an array of the given data Each of the following routines packs an array of the given data type into the active type into the active 
send buffer.  They can be called multiple times to pack data intsend buffer.  They can be called multiple times to pack data into a single o a single 
message.  In each routine, the first argument is a pointer to thmessage.  In each routine, the first argument is a pointer to the item in the array, e item in the array, 
nitemnitem is the number of items in the array to pack, and is the number of items in the array to pack, and stridestride is the stride to use is the stride to use 
when packing.when packing.

intint info = info = pvm_pkbytepvm_pkbyte( char *cp, ( char *cp, intint nitemnitem, , intint stride )stride )
intint info = info = pvm_pkcplxpvm_pkcplx( float *( float *xpxp, , intint nitemnitem, , intint stride )stride )
intint info = info = pvm_pkdcplxpvm_pkdcplx( double *( double *zpzp, , intint nitemnitem, , intint stride )stride )
intint info = info = pvm_pkdoublepvm_pkdouble( double *( double *dpdp, , intint nitemnitem, , intint stride )stride )
intint info = info = pvm_pkfloatpvm_pkfloat( float *( float *fpfp, , intint nitemnitem, , intint stride )stride )
intint info = info = pvm_pkintpvm_pkint( ( intint **npnp, , intint nitemnitem, , intint stride )stride )
intint info = info = pvm_pklongpvm_pklong( long *( long *npnp, , intint nitemnitem, , intint stride )stride )
intint info = info = pvm_pkshortpvm_pkshort( short *( short *npnp, , intint nitemnitem, , intint stride )stride )
intint info = info = pvm_pkstrpvm_pkstr( char *cp )( char *cp )



99

Overview of Common PVM Overview of Common PVM 
Routines (continued)Routines (continued)

Message Passing (continued)Message Passing (continued)

Sending and Receiving DataSending and Receiving Data

intint info =info = pvm_sendpvm_send( ( intint tidtid, , intint msgtagmsgtag ))
The routine The routine pvm_sendpvm_send()() labels the message with an integer identifier labels the message with an integer identifier msgtagmsgtag and sends it and sends it 
immediately to the process with the task identifier of immediately to the process with the task identifier of tidtid..

intint bufidbufid = = pvm_recvpvm_recv( ( intint tidtid, , intint msgtagmsgtag ))
The routine The routine pvm_recvpvm_recv is a is a blockingblocking receive that will wait until a message with labelreceive that will wait until a message with label msgtagmsgtag
has arrived from the process with the task identifier ofhas arrived from the process with the task identifier of tidtid.  A value of .  A value of --1 in 1 in msgtagmsgtag or or tidtid
matches anything (wildcard).matches anything (wildcard).

intint bufidbufid = = pvm_nrecvpvm_nrecv( ( intint tidtid, , intint msgtagmsgtag ))
The routine The routine pvm_nrecvpvm_nrecv is a nonis a non--blocking receive.  If the message has not yet arrived, blocking receive.  If the message has not yet arrived, 
pvm_nrecvpvm_nrecv returnsreturns bufidbufid = 0.  This routine can therefore be called multiple times until= 0.  This routine can therefore be called multiple times until the the 
message has arrived, while performing useful work between calls.message has arrived, while performing useful work between calls.



1010

Overview of Common PVM Overview of Common PVM 
Routines (continued)Routines (continued)

Message Passing (continued)Message Passing (continued)

Unpacking the DataUnpacking the Data
Each of the following routines unpacks an array of the given datEach of the following routines unpacks an array of the given data from the active a from the active 
receive buffer.  They can be called multiple times to unpack datreceive buffer.  They can be called multiple times to unpack data from a single a from a single 
message.  In each routine, the first argument is a pointer to thmessage.  In each routine, the first argument is a pointer to the item in the array, e item in the array, 
nitemnitem is the number of items in the array to unpack, and is the number of items in the array to unpack, and stridestride is the stride to use is the stride to use 
when unpacking.when unpacking.

intint info = info = pvm_upkbytepvm_upkbyte( char *cp, ( char *cp, intint nitemnitem, , intint stride )stride )
intint info = info = pvm_upkcplxpvm_upkcplx( float *( float *xpxp, , intint nitemnitem, , intint stride )stride )
intint info = info = pvm_upkdcplxpvm_upkdcplx( double *( double *zpzp, , intint nitemnitem, , intint stride )stride )
intint info = info = pvm_upkdoublepvm_upkdouble( double *( double *dpdp, , intint nitemnitem, , intint stride )stride )
intint info = info = pvm_upkfloatpvm_upkfloat( float *( float *fpfp, , intint nitemnitem, , intint stride )stride )
intint info = info = pvm_upkintpvm_upkint( ( intint **npnp, , intint nitemnitem, , intint stride )stride )
intint info = info = pvm_upklongpvm_upklong( long *( long *npnp, , intint nitemnitem, , intint stride )stride )
intint info = info = pvm_upkshortpvm_upkshort( short *( short *npnp, , intint nitemnitem, , intint stride )stride )
intint info = info = pvm_upkstrpvm_upkstr( char *cp )( char *cp )



1111

Example PVM Program (Example PVM Program (psdot.cpsdot.c))
The example program, The example program, psdot.cpsdot.c, performs a parallel dot product of two , performs a parallel dot product of two 
vectors, each containing 8000 elements.vectors, each containing 8000 elements.
The program divides up the work of the dot product into three neThe program divides up the work of the dot product into three nearly equal arly equal 
pieces (one piece to be executed by the master process executingpieces (one piece to be executed by the master process executing on the on the 
controlling computer and the other two pieces executing by workecontrolling computer and the other two pieces executing by worker r 
processes on the two remote computers).processes on the two remote computers).
Each worker will get Each worker will get N/PN/P vector elements to process where N = 8000 (the vector elements to process where N = 8000 (the 
size of each vector) and P = 3 (the number of processors).  The size of each vector) and P = 3 (the number of processors).  The master will master will 
keep keep N/P + N/P + mod(Nmod(N/P)/P) vector elements for itself to process.  Therefore the vector elements for itself to process.  Therefore the 
task is split up as follows:task is split up as follows:

Worker #1 has 8000/3 = 2666 elementsWorker #1 has 8000/3 = 2666 elements
Worker #2 has 8000/3 = 2666 elementsWorker #2 has 8000/3 = 2666 elements
Master has 8000/3 + mod(8000/3) = 2666 + 2 = 2668 elementsMaster has 8000/3 + mod(8000/3) = 2666 + 2 = 2668 elements
Total is 2666 + 2666 + 2668 = 8000Total is 2666 + 2666 + 2668 = 8000



1212

Example PVM Program (continued)Example PVM Program (continued)
After determining how to split up the work, the program spawns tAfter determining how to split up the work, the program spawns two copies wo copies 
of itself on each of the two worker computers.of itself on each of the two worker computers.
Worker #1Worker #1 receives 2666 elements (elements 2668 through 5333) of vectors receives 2666 elements (elements 2668 through 5333) of vectors 
XX and and YY and and Worker #2Worker #2 receives 2666 elements (elements 5334 through receives 2666 elements (elements 5334 through 
7999) of vectors 7999) of vectors XX and and YY.  The .  The MasterMaster keeps elements 0 through 2667 of keeps elements 0 through 2667 of XX
and and YY for itself.for itself.
Each Worker will compute the dot product of its own Each Worker will compute the dot product of its own subvectorssubvectors and send and send 
the result back to the Master.  The Master will compute the dot the result back to the Master.  The Master will compute the dot product of its product of its 
subvectorsubvector and add the result to the dot products received from each of thand add the result to the dot products received from each of the e 
two Workers to produce the total dot product.two Workers to produce the total dot product.
To verify that the parallel dot product was computed correctly, To verify that the parallel dot product was computed correctly, the Master the Master 
program also computes the total dot product alone for comparisonprogram also computes the total dot product alone for comparison..



1313

psdot.cpsdot.c source codesource code
#include "pvm3.h#include "pvm3.h““ /* pvm3 header file *//* pvm3 header file */
#include <#include <stdio.hstdio.h>>
#include <#include <stdlib.hstdlib.h>>

#define N 8000#define N 8000 /* size of the vectors X and Y *//* size of the vectors X and Y */
#define P 3#define P 3 /* number of processors *//* number of processors */

double double dot(intdot(int n, double x[], double y[]);n, double x[], double y[]);
void void randvec(doublerandvec(double *x, *x, intint seed);seed);

intint main() main() 
{{
double double x[Nx[N], ], y[Ny[N], ], mdotmdot, , wdotwdot, , sdotsdot;;
intint tids[Ntids[N], ], mytidmytid, , tidtid, , numtnumt, status, , status, istartistart, proc, , proc, mnmn, , wnwn;;

/* /* pvm_mytidpvm_mytid() enrolls the process into PVM on its first call() enrolls the process into PVM on its first call
and generates a unique task id if this process was notand generates a unique task id if this process was not
created by created by pvm_spawnpvm_spawn. */. */

mytidmytid = = pvm_mytidpvm_mytid()();;



1414

psdot.cpsdot.c source code source code (page 2 of 6)(page 2 of 6)
/* Check to see if I am the master process.  If I am the master /* Check to see if I am the master process.  If I am the master process, process, 

then I need to spawn other processes */then I need to spawn other processes */

if (tids[0] == if (tids[0] == PvmNoParentPvmNoParent) {) {

tids[0] = tids[0] = mytidmytid;;

randvec(xrandvec(x, , mytidmytid);); /* Randomly generate x and y using /* Randomly generate x and y using mytidmytid
randvec(yrandvec(y, 2*mytid, 2*mytid--1);1); and 2*mytidand 2*mytid--1 as seeds */1 as seeds */

wnwn = N/P;= N/P; /* # of elements to be processed by each worker *//* # of elements to be processed by each worker */
mnmn = = wnwn + N % P;+ N % P; /* # of elements to be processed by the master *//* # of elements to be processed by the master */

istartistart = = mnmn;; /* starting index for elements to be processed by/* starting index for elements to be processed by
the workers.  the workers.  istartistart starts at starts at mnmn since thesince the
the master will process the 0..mnthe master will process the 0..mn--1 elements */1 elements */

printf("printf("\\nNumbernNumber of elements in each vector = %of elements in each vector = %ii\\nn", N);", N);
printf("Numberprintf("Number of processors = %of processors = %ii\\nn", P);", P);
printf("Numberprintf("Number of elements for each worker (of elements for each worker (wnwn) = %) = %ii\\nn", ", wnwn););
printf("Numberprintf("Number of elements for the master (of elements for the master (mnmn)  = %)  = %ii\\nn\\nn", ", mnmn););



1515

psdot.cpsdot.c source code source code (page 3 of 6)(page 3 of 6)

/* Loop over all worker processes such that proc = 1,2,...,P/* Loop over all worker processes such that proc = 1,2,...,P--1 = worker #.1 = worker #.
Process P is the master. */Process P is the master. */

for (proc = 1; proc < P; proc++) {for (proc = 1; proc < P; proc++) { /* Spawn worker processes *//* Spawn worker processes */
numtnumt = = pvm_spawn("psdot",(charpvm_spawn("psdot",(char **)0,PvmTaskDefault,"",1,&tid)**)0,PvmTaskDefault,"",1,&tid);;
if (if (numtnumt != 1) {!= 1) {
printf("ERRORprintf("ERROR: could not spawn process # %i.  Dying...: could not spawn process # %i.  Dying...\\n", proc);n", proc);
pvm_exitpvm_exit()();; return 1;return 1;

} else {} else {
tids[proctids[proc] = ] = tidtid;; /* save task id of spawned task *//* save task id of spawned task */
printf("Spawnedprintf("Spawned worker %i with task id = %worker %i with task id = %ii\\nn", proc, ", proc, tidtid););

}}

/* Send messages to Workers.  Values returned (status) should be/* Send messages to Workers.  Values returned (status) should be >> 0) */0) */

status = status = pvm_initsend(PvmDataDefaultpvm_initsend(PvmDataDefault));; /* use XDR encoding *//* use XDR encoding */
status = status = pvm_pkint(&wn,1,1)pvm_pkint(&wn,1,1);; /* pack /* pack wnwn */*/
status = status = pvm_pkdouble(&x[istart],wn,1)pvm_pkdouble(&x[istart],wn,1);; /* pack /* pack wnwn elements of x[] starting at elements of x[] starting at x[istartx[istart] */] */
status = status = pvm_pkdouble(&y[istart],wn,1)pvm_pkdouble(&y[istart],wn,1);; /* pack /* pack wnwn elements of y[] starting at elements of y[] starting at y[istarty[istart] */] */
status = status = pvm_send(tids[proc],0)pvm_send(tids[proc],0);; /* send the package to worker with task id /* send the package to worker with task id 

of of tids[proctids[proc] */] */
istartistart += += wnwn;; /* advance /* advance istartistart wnwn elements for the next worker */elements for the next worker */

}} /* end for (proc = 1; proc < P; proc++) *//* end for (proc = 1; proc < P; proc++) */



1616

psdot.cpsdot.c source code source code (page 4 of 6)(page 4 of 6)

mdotmdot = = dot(mn,x,ydot(mn,x,y);); /* Compute master/* Compute master’’s part of the dot product */s part of the dot product */
printf("printf("\\nMasternMaster computed partial dot product of %computed partial dot product of %ff\\nn", ", mdotmdot););

/* Receive the dot products from each of the workers and add to /* Receive the dot products from each of the workers and add to get the get the 
total dot product */total dot product */

for (proc = 1; proc < P; proc++) {for (proc = 1; proc < P; proc++) {
status = status = pvm_recv(pvm_recv(--1,1)1,1);; /* receive a package from a worker *//* receive a package from a worker */
status = status = pvm_upkdouble(&wdot,1,1)pvm_upkdouble(&wdot,1,1);; /* unpack the workers dot product *//* unpack the workers dot product */
printf("Workerprintf("Worker returned partial dot product of %returned partial dot product of %ff\\nn", ", wdotwdot););
mdotmdot = = mdotmdot + + wdotwdot;; /* add workers dot product to masters dot product *//* add workers dot product to masters dot product */

}}

/* Print out the result *//* Print out the result */

printf("printf("\\nParallelnParallel result for <result for <x,yx,y>   = %>   = %ff\\nn", ", mdotmdot););

/* Now computer the dot product sequentially for comparison *//* Now computer the dot product sequentially for comparison */

sdotsdot = = dot(N,x,ydot(N,x,y););
printf("Sequentialprintf("Sequential result for <result for <x,yx,y> = %> = %ff\\nn", ", sdotsdot););

}}



1717

psdot.cpsdot.c source code source code (page 5 of 6)(page 5 of 6)

else {else {

/***************************** Worker Processing ***************/***************************** Worker Processing ******************************/***************/

status = status = pvm_recv(tids[0],0)pvm_recv(tids[0],0);; /* receive message from master *//* receive message from master */
status = status = pvm_upkint(&wn,1,1)pvm_upkint(&wn,1,1);; /* unpack integer (1 item, stride = 1) *//* unpack integer (1 item, stride = 1) */
status = status = pvm_upkdouble(x,wn,1)pvm_upkdouble(x,wn,1);; /* unpack /* unpack subvectorsubvector x (x (wnwn items, stride = 1) */items, stride = 1) */
status = status = pvm_upkdouble(y,wn,1)pvm_upkdouble(y,wn,1);; /* unpack /* unpack subvectorsubvector y (y (wnwn items, stride = 1) */items, stride = 1) */

/* Compute local dot product and send it to master *//* Compute local dot product and send it to master */

wdotwdot = = dot(wn,x,ydot(wn,x,y););

status = status = pvm_initsend(PvmDataDefaultpvm_initsend(PvmDataDefault));; /* use XDR encoding */ /* use XDR encoding */ 
status = status = pvm_pkdouble(&wdot,1,1)pvm_pkdouble(&wdot,1,1); ; /* pack the local dot product *//* pack the local dot product */
status = status = pvm_send(tids[0],1)pvm_send(tids[0],1);   ;   /* send the package *//* send the package */

}}
pvm_exitpvm_exit();();
return 0;return 0;

}} /***** end of main program ******//***** end of main program ******/



1818

psdot.cpsdot.c source code source code (page 6 of 6)(page 6 of 6)

/*************** dot function *******************//*************** dot function *******************/

double double dot(intdot(int n, double x[], double y[])n, double x[], double y[])
{{

intint i;i;
double temp = 0.0;double temp = 0.0;
for (i = 0; i < n; i++) {for (i = 0; i < n; i++) {
temp += temp += x[ix[i] * ] * y[iy[i];];

}}
return temp;return temp;

}}

/**************** /**************** randvecrandvec function ****************/function ****************/

void void randvec(doublerandvec(double x[], x[], intint seed)seed)
{{

intint i, sign;i, sign;
srand(seedsrand(seed););
for (i = 0; i < N; i++) {for (i = 0; i < N; i++) {

if (rand()%2 == 0)if (rand()%2 == 0)
sign = 1;sign = 1;

elseelse
sign = sign = --1;1;

x[ix[i] = sign*(double)rand()/(2.0e+6);] = sign*(double)rand()/(2.0e+6);
}}

}}



1919

Compiling/Linking Compiling/Linking psdot.cpsdot.c
The The psdotpsdot object code must be linked with the object code must be linked with the pvm3pvm3 C library:C library:

gccgcc psdot.cpsdot.c ––lpvm3 lpvm3 ––o o psdotpsdot

PVMPVM assumes that the executable resides in assumes that the executable resides in $HOME/pvm3/bin/LINUX$HOME/pvm3/bin/LINUX..

The executable The executable psdotpsdot should be placed in should be placed in $HOME/pvm3/bin/LINUX$HOME/pvm3/bin/LINUX on all on all 
machines in the cluster.machines in the cluster.



2020

Running Running psdot.cpsdot.c
Start the Start the PVMPVM daemon on the host and add the two remote machines (daemon on the host and add the two remote machines (orionorion
and and taurustaurus).).
Quit the Quit the PVMPVM console (daemon still running).console (daemon still running).



2121

Running Running psdot.cpsdot.c
Execute the Execute the psdotpsdot program.program.



2222

ConclusionsConclusions
PVMPVM is a free, well documented, and easy to install message passingis a free, well documented, and easy to install message passing API API 
for distributed computing.for distributed computing.
PVMPVM is well suited for learning parallel programming.is well suited for learning parallel programming.



2323

ReferencesReferences
1.1. A. A. GeistGeist, A. , A. BeguelinBeguelin, J. , J. DongarraDongarra, W. Jiang, R. , W. Jiang, R. ManchekManchek, V. , V. SunderamSunderam, , 

PVM: Parallel Virtual Machine PVM: Parallel Virtual Machine –– A UserA User’’s Guide and Tutorial for Networked s Guide and Tutorial for Networked 
Parallel ComputingParallel Computing: The MIT Press; Cambridge, Massachusetts: 1994.: The MIT Press; Cambridge, Massachusetts: 1994.

2.2. A. A. GeistGeist, J. Kohl, P. Papadopoulos, , J. Kohl, P. Papadopoulos, PVM and MPI: a Comparison of PVM and MPI: a Comparison of 
FeaturesFeatures,  May 30, 1996, ,  May 30, 1996, http://http://www.csm.ornl.gov/pvmwww.csm.ornl.gov/pvm//


