Parallel Processing using
PVM on a Linux Cluster

Thomas K. Gederberg
CENG 6532 Fall 2007

What is PVM?

PV (Parallel Virtual Machine) is a “software system that permits a
heterogeneous collection of Unix computers networked together to be
viewed by a user’s program as a single parallel computer”.’

Since the distributed computers have no shared memory, the PVVM system
uses Message Passing for data communication among the processors.

PVM and MPI (Message Passing Interface) are the two common message
passing API’s for distributed computing.

MPI, the newer of the two API’s, was designed for homogenous distributed
computers and offers higher performance.

PVM, however, sacrifices performance for flexibility. PVM was designed to
run over a heterogeneous network of distributed computers. PVM also
allows for fault tolerance — it allows for the detection of, and reconfiguration
for, node failures.

P\V/M includes both C and Fortran libraries.

PVM was developed by Oak Ridge National Laboratory, the University of
Tennessee, Emory University, and Carnegie Mellon University.

Installing PVM in Linux

PVM is easy to install on a machine running Linux and can be installed in the users
home directory (does not need root or administrator privileges).

Obtain the PVM source code (latest version is 3.4.5) from the PVM website:
hitp://Www.csm.ornl.gev/pvm/pvim: home.html

Unzip and untar the package (pvm3.4.5.tgz) in your home directory — this will create a
directory called pvm3

Modify your startup script (.bashre, .cshrc, etc.) to define:
$PVM_ROOT = $HOME/pvm3
$PVM_ARCH = LINUX

cd to the pvm3 directory
Type make

The makefile will build pvm (the PVM console), pvmd3 (the pvm daemon), libpvm3.a
(PVM C/C++ library), libfpvm3.a (PVM Fortran library), and libgpvm3.a (PVM group
library) and places all of these files in the $PVM_ROOT/lib/LINUX directory.

The makefile will also build pvmgs (PVM group server) and place it in the
$PVM_ROOT/bin/LINUX directory.

Configuring the Cluster

The Linux cluster consists of three machines running Linux (Ubuntu 7.04)
connected via a wireless router.

Recommend using SSH (Secure Shell) rather than RSH (Remote Shell) as
the communication protocol. Generate a public/private key on the main
machine and copy the key to the .ssh directory on each of the remote
machines. This will allow for passwordless communication.

Install P\/IM on each machine.

In the ~/.pvm3 directory on each machine, create a .rhosts file that lists the
name of each of the machines in the cluster (one name per line). The
/etc/host file on each machine should list the machine name and its IP
address.

Overview of Common PVIM
Routines

* Process Control

int tid = pvm_mytid()
The routine pvm_mytid() returns the TID (task identifier) of this process and
enrolls the process into PVVM if this is the first PVM call.

int info = pvm_exit()
The routine pvm_exit() tells the PVVIM daemon that this process is leaving PVM.
Typically, pvm_exit is called before exiting the C program.

int numt = pvm_spawn(char *task, char **argv, int flag, char* where, int ntask, int
*tids)
The routine pvm_spawn() starts up ntask copies of the executable task on the
virtual machine. argv is a pointer to an array of arguments to fask. The flag
argument is used to specify options such as where the tasks should be spawned,
whether to start a debugger, or whether to generate trace data.

Overview ofi Common PVM
Routines (continued)

* |nformation

int tid = pvm_parent()
The routine pvm_parent() returns the TID of the process that spawned

this task or the value of PvmNoParent if not created by pvm_spawn
(i.e., tid will equal PvmNoParent if this process is the parent process).

Int dtid = pvm_tidtohost(int tid)

The routine pvm_tidtohost() returns the TID of the daemon running on
the same host as tid — useful for determining on which host a given task
IS running.

int info = pvm__config(int *nhost, int *narch, struct pvmhostinfo **hostp)

The routine pvm_config() returns information about the virtual machine
including the number of hosts, nhost, and the number of different
architectures, narch. hositp is a pomter to a user declared array of
pvmhostinfo structures.

Overview of Common PVIM
Routines (continued)

« Message Passing

Sending a message consists of three steps:

the send buffer must be initialized
the message must be “packed” into this buffer
the completed message Is sent

« |nitializing the Send Buffer
int tid = pvm_initsend(int encoding)

The routine pvm_initsend() clears any current send buffer and creates a
new one for packing a message. The encoding scheme used is set by
encoding. XDR (the External Data Representation standard) encoding
scheme is used by default.

Overview ofi Common PVM
Routines (continued)

« Message Passing (continued)

« Packing the Data

Each of the following routines packs an array of the given data type into the active
send buffer. They can be called multiple times to pack data into a single
message. In each routine, the first argument is a pointer to the item in the array,
nitem is the number of items in the array to pack, and stride is the stride to use
when packing.

int info = pvm_pkbyte(char *cp, int nitem, int stride)

int info = pvm_pkeplx(float *xp, int nitem, int stride)

int info = pvm_pkdcplx(double *zp, int nitem, int stride)
int info = pvm__pkdouble(double *dp, int nitem, int stride)
int info = pvm_pkfloat(float *fp, int nitem, int stride)

int info = pvm_pkint(int *np, int nitem, int stride)

int info = pvm_pklong(long *np, int nitem, int stride)

int info = pvm_pkshort(short *np, int nitem, int stride)

int infor.= pvm_pkstr(char *cp)

Overview ofi Common PVM
Routines (continued)

« Message Passing (continued)

« Sending and Receiving Data

int info = pvm_send(int tid, int msgtag)
The routine pvm_send() labels the message with an integer identifier msgtag and sends it
immediately to the process with the task identifier of tid.

int bufid = pvm_recv(int tid, int msgtag)
The routine pvm_recv is a blocking receive that will wait until a message with label msgtag

has arrived from the process with the task identifier of tid. A value of -1 in msgtag or tid
matches anything (wildcard).

int bufid = pvm_nrecv(int tid, int msgtag)
The routine pvm_nrecv is a non-blocking receive. If the message has not yet arrived,

pvm_nrecv returns bufid = 0. This routine can therefore be called multiple times until the
message has arrived, while performing useful work between calls.

Overview ofi Common PVM
Routines (continued)

« Message Passing (continued)

« Unpacking the Data

Each of the following routines unpacks an array of the given data from the active
receive buffer. They can be called multiple times to unpack data from a single
message. In each routine, the first argument is a pointer to the item in the array,
niterm is the number of items in the array to unpack, and stride is the stride to use
when unpacking.

int info = pvm_upkbyte(char *cp, int nitem, int stride)

int info = pvm_upkeplx(float *xp, int nitem,, int stride)

int info = pvm_upkdcplx(double *zp, int nitem, int stride)
int info = pvm_upkdouble(double *dp, int nitem, int stride)
int info = pvm_upkfloat(float *fp, int nitem, int stride)

int info, = pvm_upkint(int *np, int nitem, int stride)

int info = pvm_upklong(long *np, int nitem, int stride)

int info = pvm_upkshort(short *np, int nitem, int stride)

int info = pvm_upkstr(char *cp)

10

Example PVM Program (psdot.c)

The example program, psdot.c, performs a parallel dot product of two
vectors, each containing 8000 elements.

The program divides up the work of the dot product into three nearly equal
pieces (one piece to be executed by the master process executing on the
controlling computer and the other two pieces executing by worker
processes on the two remote computers).

Each worker will get N/P vector elements to process where N = 8000 (the
size of each vector) and P = 3 (the number of processors). The master will
keep N/P + mod(N/P) vector elements for itself to process. Therefore the
task is split up as follows:

Worker #1 has 8000/3 = 2666 elements
Worker #2 has 8000/3 = 2666 elements

Master has 8000/3 + mod(8000/3) = 2666 + 2 = 2668 elements
Total is 2666 + 2666 + 2668 = 8000

11

Example PVM Program (continued)

« After determining how to split up the work, the program spawns two copies
of itself on each of the two worker computers.

« \Worker #1 receives 2666 elements (elements 2668 through 5333) of vectors
X and Y and Worker #2 receives 2666 elements (elements 5334 through
7999) of vectors X and Y. The Master keeps elements 0 through 2667 of X
and Y for itself.

« Each Worker will compute the dot product of its own subvectors and send
the result back to the Master. The Master will compute the dot product of its
subvector and add the result to the dot products received from each of the
two Workers to produce the total dot product.

« To verify that the parallel dot product was computed correctly, the Master
program also computes the total dot product alone for comparison.

12

pPSdot.c source code

#include "pvm3.h* /* pvm3 header file */
#include <stdio.h>
#include <stdlib.h>

#define N 8000 /* size of the vectors X and Y */
#define P 3 /* number of processors */

double dot(int n, double x[], double y[]);
void randvec(double *x, int seed);

int main()

{
double x[N], y[N], mdot, wdot, sdot;

int tids[N], mytid, tid, numt, status, istart, proc, mn, wn;

/* pvm_mytid() enrolls the process into PVM on its first call
and generates a unique task id if this process was not
created by pvm_spawn. */

mytid = pvm_mytid();

13

psdot.c source code (page 2 of 6)

/* Check to see if | am the master process. If | am the master process,
then | need to spawn other processes */

if (tids[0] == PvmNoParent) {

tids[0] = mytid;

randvec(x, mytid); /* Randomly generate x and y using mytid
randvec(y, 2*mytid-1); and 2*mytid-1 as seeds */

wn = N/P; [* # of elements to be processed by each worker */
mn =wn + N % P; /* # of elements to be processed by the master */
istart = mn; /* starting index for elements to be processed by

the workers. istart starts at mn since the
the master will process the 0..mn-1 elements */

printf("\nNumber of elements in each vector = %Ii\n", N);
printf("Number of processors = %i\n", P);

printf("Number of elements for each worker (wn) = %i\n", wn);
printf("Number of elements for the master (mn) = %i\n\n", mn);

14

psdot.c source code (page 3 of 6)

/* Loop over all worker processes such that proc = 1,2,...,P-1 = worker #.
Process P is the master. */

for (proc = 1; proc < P; proc++) { /* Spawn worker processes */

numt = pvm_spawn(“psdot”,(char **)0,PvmiTaskDefault,™, 1, &tid);

if (numt!= 1) {
printf("ERROR: could not spawn process # %i. Dying...\n", proc);
pvm_exit(); return 1;

} else {
tids[proc] = tid; /* save task id of spawned task */
printf("Spawned worker %i with task id = %i\n", proc, tid);

}

/* Send messages to Workers. Values returned (status) should be > 0) */

status = pvm_initsend(PvmDataDefault); /* use XDR encoding */

status = pvm_pkint(&wn,1,1); /* pack wn */

status = pvm_pkdouble(&x[istart],wn,1); /* pack wn elements of x[] starting at x[istart] */
status = pvm_pkdouble(&y[istart],wn,1); /* pack wn elements of y[] starting at y[istart] */

status = pvm_send(tids[proc],0); /* send the package to worker with task id
of tids[proc] */
istart += wn; /* advance istart wn elements for the next worker */

} /¥ end for (proc = 1; proc < P; proc++) */
15

psdot.c source code (page 4 of 6)

mdot = dot(mn,x,y); /* Compute master’s part of the dot product */
printf("\nMaster computed partial dot product of %f\n", mdot);

/* Receive the dot products from each of the workers and add to get the
total dot product */

for (proc = 1; proc < P; proct++) {

status = pvm_recv(-1,1); /* receive a package from a worker */

status = pvm_upkdouble(&wdot,1,1); /* unpack the workers dot product */

printf("Worker returned partial dot product of %f\n", wdot);

mdot = mdot + wdot; /* add workers dot product to masters dot product */
ki

/* Print out the result */
printf("\nParallel result for <x,y> = %f\n", mdot);
/* Now computer the dot product sequentially for comparison */

sdot = dot(N,x,y);
printf("Sequential result for <x,y> = %f\n", sdot);

16

psdot.c source code (page 5 of 6)

else {

/***************************** Worker PrOCeSSIng ******************************/

status = pvm_recv(tids[0],0); /* receive message from master */

status = pvm_upkint(&wn,1,1); /* unpack integer (1 item, stride = 1) */

status = pvm_upkdouble(x,wn,1); /* unpack subvector x (wn items, stride = 1) */
status = pvm_upkdouble(y,wn,1); /* unpack subvector y (wn items, stride = 1) */

/* Compute local dot product and send it to master */
wdot = dot(wn,X,y);

status = pvm_initsend(PvmDataDefault); /* use XDR encoding */

status = pvm_pkdouble(&wdot,1,1); /* pack the local dot product */
status = pvm_send(tids[0],1); /* send the package */
}
pvm_exit();
return O;
} [***** end of main program ******/

17

psdot.c source code (page 6 of 6)

/*************** dot funCtlon *******************/

double dot(int n, double x[], double y[])
{
int i;
double temp = 0.0;
for (I=0; i <n;i++) {
temp += X[i] * y[i];
}

return temp;

****************/

[FrEEEEEEEEREEEEE randvec function

void randvec(double x[], int seed)
{
int i, sign;
srand(seed);
for (I=0; i <N;i++) {
if (rand()%2 == 0)

sign = 1;
else
sign = -1;
X[i] = sign*(double)rand()/(2.0e+6);

}
}

18

Compiling/Linking psdot.c

* The psdot object code must be linked with the pvm3 C library:

gcc psdot.c —Ipvm3 —o psdot

PVM assumes that the executable resides in SHOME/pvm3/bin/LINUX.

« The executable psdot should be placed in SHOME/pvm3/bin/LINUX on all

machines in the cluster.

19

Running psdot.c

« Start the PVVIM daemon on the host and add the two remote machines (orion
and taurus).

* Quit the PV console (daemon still running).

File Edit wview Terminal Tabs Help

tom@andromeda:~/pvm3/bin/LINUXS pvm
pvm= add orion

add orion

1 successful

pvm= add taurus
add taurus
1 successTul
HOST
taurus
pvm= conf
conf
3 hosts, 1 data format
HOST ARCH SPEED D5IG
andromeda LIMNWX 1000 GxB0408841
orion LINUX 10680 AxDe408841
taurus LINUX 16680 AxBE408841
pvm= guit
gquit

Console: exit handler called
pvmd still running.
tom@andromeda:~/pvm3/bin/LINUXS |

Running psdot.c

Execute the psdot program.

File Edit wview Terminal Tabs Help

tom@andromeda:~/pvm3/bin/LINUXS psdot

Number of elements in each wvector = 8000
Number of processors = 3

Number of elements for each worker (wn)
Number of elements for the master (mn)

Spawned worker 1 with task id 262148
Spawned worker 2 with task id = 524290

Master computed partial dot product of 2082878.931181
Worker returned partial dot product of 11786383.955003
Worker returned partial dot product of -29929483.602381

Parallel result for <x,y= -160661408.716187
Seguential result for <x,y= = -16066140.716187
tom@andromeda:~/pvm3/bin/LINUXS [

21

Conclusions

« PVM is a free, well documented, and easy to install message passing API
for distributed computing.

« PVM is well suited for learning parallel programming.

22

References

1. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, V. Sunderam,
PVM: Parallel Virtual Machine — A User’s Guide and Tutorial for Networked
Parallel Computing: The MIT Press; Cambridge, Massachusetts: 1994.

2. A. Geist, J. Kohl, P. Papadopoulos, PVVM and MPI: a Comparison of
[Features, May 30, 1996, hitp://www.csm.ornl.gov/pvm/

23

