

Object Recognition

Tutorial Using

PYNQ Z2 Board
A detailed guide for object detection using deep learning approach on

PYNQ Z2 board

Sarala Kumari Surapally

Id: 1952794

December 2020

INTRODUCTION

Object Detection and Recognition is one of the most demanding and challenging jobs in various

applications such as autonomous vehicles, Crowd Counting, Face recognition etc. Object

Detection involves classifying the objects in an image and localizing them by drawing bounding

boxes around the objects in an image.

Object Detection can be done using Machine Learning based techniques and Deep Learning

based techniques. In the Machine learning-based approach, the main focus is on various features

of an image like color histogram or edges in order to identify the group of pixels that may belong

to an object. These features are then passed to a model to predict object location and its label.

However, Convolutional Neural Networks (CNNs) are used to achieve object detection in the

case of Deep Learning-based approaches.

PYNQ is Python Productivity for Zynq. It is an open-source project from Xilinx that facilitates

the design of systems integrated with Zynq All Programmable Systems on Chips (APSoCs).

PYNQ-Z2 is an FPGA-based development platform that belongs to the ZYNQ XC7Z020 FPGA

family, specifically designed to support PYNQ. Taking advantage of ARM programming and

sophisticated software at ZYNQ, designers can build more powerful systems with it.

Additionally, SoCs can be processed in Python using jupyter notebook and the code can be

developed and implemented directly in PYNQ-Z2. Programmable programs are introduced as

tool libraries and program libraries are imported and programmed in the same way as

programmed APIs.

In this tutorial, we implement the object detection on the PYNQ Z2 board. This tutorial explains

the basic concepts of the PYNQ Z2 board and some of the open-source examples of object

recognition available on pynq website. The report is prepared with an assumption that the reader

has knowledge of the basics of jupyter notebook and no prior knowledge on the pynq board.

To continue with the project, we need to have a PYNQ Z2 board, SD card preloaded with pynq

image, Ethernet cable, USB cable, and web camera to capture images at run time.

PYNQ Z2 BOARD FEATURES:

PYNQ-Z2 board integrates USB and Ethernet to connect to internet, HDMI Input/Output, MIC

Input, Audio Output, Arduino interface, Raspberry Pi interface, 2 Pmod, user LED, push-

buttons, switches, MicroSD Slot, Power In port for direct power connection, a Jumper for power

source selection and another jumper to select Boot Mode.

It is intended to be easily extensible with Pmod, Arduino, and peripherals, along with general-

purpose GPIO pins.

MicroSD CARD SETUP:

You can download the pre-compiled PYNQ-Z2 image using the link

http://www.pynq.io/board.html. Connect the microSD card to a PC/Laptop. Open Win32Disk

Imager application, select the downloaded pynq image, and click on the write button. This will

transfer the pynq image to SD card.

BOARD SETUP:

Setup the board by following below steps.

1. Set the boot jumper to SD card.

2. Set the power jumper to power the board from USB.

3. Insert the SD card loaded with pynq image.

4. Connect MicroUSB cable to PROG-UART port of the board and USB port to your

PC/Laptop.

5. Connect Ethernet cable to a PC or to a Router.

6. Turn ON the board which will immediately glow the Red LED to indicate that the board

has power and then the Done LED will turn ON to confirm that the device is working.

Finally, 2 Blue LEDs and four Green LEDs will light up to show that the device is booted

and ready to use.

NETWORK CONNECTION:

Set the IP address of your PC in the same range as the board by following the below steps:

• Open Control Panel -> Select Network and Internet -> Network and Sharing Center and

then click on Ethernet (highlighted below)

• Select Internet Protocol Version 4 and click on properties.

• Set the IP Address to 192.168.2.1 and Subnet mask to 255.255.255.0 and click ok

CONNECTING TO JUPYTER NOTEBOOK:

Open a web browser and navigate to http://192.168.2.99 to connect to jupyter notebook. You

will be navigated to a login screen if the board setup is completed successfully. Enter Username

xilinx and password xilinx.

Jupyter Notebook opens as below:

INSTALLING PACKAGES ON PYNQ BOARD:

Example projects can be accessed from pynq website http://www.pynq.io/examples.

http://192.168.2.99/
http://www.pynq.io/examples

Install the example packages on pynq board by following below steps:

• Download the source code of the example project from github.

• Upload the code to jupyter notebook using UPLOAD option. Select the downloaded zip

folder and click open.

• Open a new notebook and unzip the file using below code:

• Then open a new terminal in jupyter notebook and run the setup.py file using “python3

setup.py install” command.

• This will install the project package on board and create a directory in the jupyter home

area.

EXAMPLE 1: ROAD SIGN RECOGNITION USING BNN

Source Code: https://github.com/Xilinx/BNN-PYNQ/

This example recognizes input image with a binarized neural network emphasizing 6

convolutional layers, 3 max pool layers, and 3 fully connected layers. It uses a German road-sign

dataset and can classify 42 classes of road signs. The example has successfully identified the

road signs from the given input images.

Input images are:

Launching BNN in hardware:

Inference took 4840.00 microseconds, 537.78 usec per image

Classification rate: 1859.50 images per second

Identified classes: [1 27 27 19 14 1 4 3 41]

Identified class name: 30 Km/h

Identified class name: Pedestrians in road ahead

Identified class name: Pedestrians in road ahead

Identified class name: Bend to left

Identified class name: Stop

Identified class name: 30 Km/h

Identified class name: 70 Km/h

Identified class name: 60 Km/h

Identified class name: End of no-overtaking zone

Launching BNN in Software:

Inference took 14312376.00 microseconds, 1590264.00 usec per image

Classification rate: 0.63 images per second

Identified classes: [1 27 27 19 14 1 4 3 41]

Identified class name: 30 Km/h

Identified class name: Pedestrians in road ahead

Identified class name: Pedestrians in road ahead

Identified class name: Bend to left

Identified class name: Stop

Identified class name: 30 Km/h

Identified class name: 70 Km/h

Identified class name: 60 Km/h

Identified class name: End of no-overtaking zone

From the results, we can clearly notice that the time taken to identify road signs in input images

in hardware is less than in software.

The below code snippet searches if there is any stop sign in the input image and locates if found.

EXAMPLE 2A: FACE DETECTION USING OPEN CV

In this example, a webcamera is connected to the USB port of the board. The webcam captures

the runtime images to which open cv face detection will be applied. The example detects and

locates face and eyes from the image.

INPUT:

RESULT:

EXAMPLE 2B: EDGE DETECTION USING OPENCV

In this project, the USB camera is connected with the PYNQ USB Port. A Monitor is attached to

the HDMI output port of the PYNQ board. Computer Vision-based edge detection algorithm like

Canny Edge algorithm is applied to the real-time video using Python Programming. The result

will be displayed on the monitor with edge detection applied.

INPUT

RESULT

EXAMPLE 3: OBJECT DETECTION USING QNN

Source Code: https://github.com/Xilinx/QNN-MO-PYNQ

In this project, a kind of Tiny-Yolo model was developed based on the Darknet network to

recognize multiple objects. Each input image is associated with a single neural network. This

network works by diving the image into multiple regions and predicting bounding boxes and

probabilities for each region. The object is recognized and labeled as shown below with the

probability.

The project classifies multiple objects in the input image with the respective probability as

shown in the below images:

https://github.com/Xilinx/QNN-MO-PYNQ

REFERENCES:

1. Xilinx. PYNQ: Python Productivity for Zynq. url: http://www. pynq.io

2. TUL Corporation, “TUL PYNQ-Z2 Board Based on Xilinx Zynq SoC.” 2020, url:

http://www.tul.com.tw/ProductsPYNQ-Z2.html.

3. BNN-PYNQ PIP INSTALL Package. url: https://github.com/Xilinx/BNN-PYNQ/

4. QNN-MO-PYNQ PIP INSTALL Package. url:https://github.com/Xilinx/QNN-MO-

PYNQ

5. OpenCV Face Detection HDMI

url:https://github.com/Xilinx/PYNQ/blob/v2.0/boards/Pynq-

Z1/base/notebooks/video/opencv_face_detect_hdmi.ipynb

6. OpenCV Filters Webcam. Url: https://github.com/Xilinx/PYNQ/blob/v1.4/Pynq-

Z1/notebooks/examples/opencv_filters_webcam.ipynb

7. OpenCV Team. About OpenCV (Open Source Computer Vision Library). url:

https://opencv.org/about/

8. Joseph Redmon et al. “You Only Look Once: Unified, Real-Time Object Detection”. In:

CoRR abs/1506.02640 (2015). arXiv: 1506.02640. url: http://arxiv.org/abs/1506.02640.

9. T. Wu, Y. Wang, W. Shi and J. Lu, "HydraMini: An FPGA-based Affordable Research

and Education Platform for Autonomous Driving," 2020 International Conference on

Connected and Autonomous Driving (MetroCAD), Detroit, MI, USA, 2020, pp. 45-52,

doi: 10.1109/MetroCAD48866.2020.00016.

10. Xilinx Inc., “Zynq-7000 SoC product.” 2020,

url:https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html

11. V. Y. Çambay, A. Uçar and M. A. Arserim, "Object Detection on FPGAs and GPUs by

Using Accelerated Deep Learning," 2019 International Artificial Intelligence and Data

Processing Symposium (IDAP), Malatya, Turkey, 2019, pp. 1-5, doi:

10.1109/IDAP.2019.8875870.

https://github.com/Xilinx/BNN-PYNQ/
https://github.com/Xilinx/QNN-MO-PYNQ
https://github.com/Xilinx/QNN-MO-PYNQ
https://github.com/Xilinx/PYNQ/blob/v2.0/boards/Pynq-Z1/base/notebooks/video/opencv_face_detect_hdmi.ipynb
https://github.com/Xilinx/PYNQ/blob/v2.0/boards/Pynq-Z1/base/notebooks/video/opencv_face_detect_hdmi.ipynb
https://github.com/Xilinx/PYNQ/blob/v1.4/Pynq-Z1/notebooks/examples/opencv_filters_webcam.ipynb
https://github.com/Xilinx/PYNQ/blob/v1.4/Pynq-Z1/notebooks/examples/opencv_filters_webcam.ipynb
https://opencv.org/about/
http://arxiv.org/abs/1506.02640
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html

