Object Recognition Tutorial Using PYNQ Z2 Board

A detailed guide for object detection using deep learning approach on PYNQ Z2 board

Sarala Kumari Surapally Id: 1952794 December 2020

INTRODUCTION

Object Detection and Recognition is one of the most demanding and challenging jobs in various applications such as autonomous vehicles, Crowd Counting, Face recognition etc. Object Detection involves classifying the objects in an image and localizing them by drawing bounding boxes around the objects in an image.

Object Detection can be done using Machine Learning based techniques and Deep Learning based techniques. In the Machine learning-based approach, the main focus is on various features of an image like color histogram or edges in order to identify the group of pixels that may belong to an object. These features are then passed to a model to predict object location and its label. However, Convolutional Neural Networks (CNNs) are used to achieve object detection in the case of Deep Learning-based approaches.

PYNQ is Python Productivity for Zynq. It is an open-source project from Xilinx that facilitates the design of systems integrated with Zynq All Programmable Systems on Chips (APSoCs). PYNQ-Z2 is an FPGA-based development platform that belongs to the ZYNQ XC7Z020 FPGA family, specifically designed to support PYNQ. Taking advantage of ARM programming and sophisticated software at ZYNQ, designers can build more powerful systems with it. Additionally, SoCs can be processed in Python using jupyter notebook and the code can be developed and implemented directly in PYNQ-Z2. Programmable programs are introduced as tool libraries and program libraries are imported and programmed in the same way as programmed APIs.

In this tutorial, we implement the object detection on the PYNQ Z2 board. This tutorial explains the basic concepts of the PYNQ Z2 board and some of the open-source examples of object recognition available on pynq website. The report is prepared with an assumption that the reader has knowledge of the basics of jupyter notebook and no prior knowledge on the pynq board.

To continue with the project, we need to have a PYNQ Z2 board, SD card preloaded with pynq image, Ethernet cable, USB cable, and web camera to capture images at run time.

PYNQ Z2 BOARD FEATURES:

PYNQ-Z2 board integrates USB and Ethernet to connect to internet, HDMI Input/Output, MIC Input, Audio Output, Arduino interface, Raspberry Pi interface, 2 Pmod, user LED, pushbuttons, switches, MicroSD Slot, Power In port for direct power connection, a Jumper for power source selection and another jumper to select Boot Mode.

It is intended to be easily extensible with Pmod, Arduino, and peripherals, along with generalpurpose GPIO pins.

MicroSD CARD SETUP:

You can download the pre-compiled PYNQ-Z2 image using the link http://www.pynq.io/board.html. Connect the microSD card to a PC/Laptop. Open Win32Disk Imager application, select the downloaded pynq image, and click on the write button. This will transfer the pynq image to SD card.

👒 Win32 Disk Imager - 1.0	-		×
Image File		De	vice
C:/Users/saira/OneDrive/Desktop/RA work/pynq_z2_v2.6.0.img		[G:	V -
Hash			
None Generate Copy			
Read Only Allocated Partitions			
Progress			
Cancel Read Write Verify Only		Ex	it

BOARD SETUP:

Setup the board by following below steps.

- 1. Set the boot jumper to SD card.
- 2. Set the power jumper to power the board from USB.
- 3. Insert the SD card loaded with pynq image.
- 4. Connect MicroUSB cable to PROG-UART port of the board and USB port to your PC/Laptop.
- 5. Connect Ethernet cable to a PC or to a Router.
- 6. Turn ON the board which will immediately glow the Red LED to indicate that the board has power and then the Done LED will turn ON to confirm that the device is working. Finally, 2 Blue LEDs and four Green LEDs will light up to show that the device is booted and ready to use.

NETWORK CONNECTION:

Set the IP address of your PC in the same range as the board by following the below steps:

• Open Control Panel -> Select Network and Internet -> Network and Sharing Center and then click on Ethernet (highlighted below)

ontrol Panel Home	View your basic network info	prmation and set up connections
	View your active networks	
lange adapter settings		
iange advanced sharing itings	ATTd5cWKI2 Public petwork	Access type: Internet
edia streaming options	Public network	
	Unidentified network	Access type: No network access
	Public network	Connections: W Ethernet
	Change your networking settings —	
	Ethernet Status	×
	General	
	Connection	
	IPv4 Connectivity:	No network access
	IPv6 Connectivity:	No network access
	Media State:	Enabled
	Duration:	00:02:42
	Speed:	1.0 Gbps
	D <u>e</u> tails	
	Activity	
	Sent -	- Received
	Dadiata 1	104
	Packets: 1,	,107
		Diagnose
		Close

• Select Internet Protocol Version 4 and click on properties.

Ethernet Properties	\times				
Networking Sharing					
Connect using:					
🛃 Realtek PCIe GbE Family Controller					
<u>Configure</u> This connection uses the following items:	1				
	•				
Description					
Transmission Control Protocol/Internet Protocol. The default wide area network protocol that provides communication across diverse interconnected networks.					
OK Cance	1				

• Set the IP Address to 192.168.2.1 and Subnet mask to 255.255.255.0 and click ok

Internet Protocol Version 4 (TCP/IPv4) Properties				
General				
You can get IP settings assigned autor this capability. Otherwise, you need to for the appropriate IP settings.	natically if your network supports ask your network administrator			
O Obtain an IP address automatical	ly			
Use the following IP address:				
<u>I</u> P address:	192.168.2.1			
S <u>u</u> bnet mask:	255.255.255.0			
Default gateway:				
Obtain DNS server address auton	natically			
• Use the following DNS server add	resses:			
Preferred DNS server:	127.0.0.1			
<u>A</u> lternate DNS server:	· · ·			
Validate settings upon exit	Ad <u>v</u> anced			
	OK Cancel			

CONNECTING TO JUPYTER NOTEBOOK:

Open a web browser and navigate to **http://192.168.2.99** to connect to jupyter notebook. You will be navigated to a login screen if the board setup is completed successfully. Enter Username xilinx and password xilinx.

Jupyter Notebook opens as below:

C Home	× +	-	۵
\leftrightarrow \rightarrow C	🛦 Not secure 192.168.2.99;b090/tree?	0 🐵 G	* 🕥
🔛 Apps 🔢	Handshake 💋 Blackboard Learn 🚥 uhcl eservices 🚡 LinkedIn 🐵 SAP Web IDE Full-S 🔺 Matlab 🍾 Home Welcome to 🚦 Mail - Surapally, Sar Ŋ Thesis Meeting 🧧	Launch Me	eting - Z
	💭 Jupyter	Logout	
	Files Running Clusters Nbextensions		
	Select items to perform actions on them.	New - 2	
	□ 0 👻 🖿 Name 🗣 Las	st Modified	
	2 m	nonths ago	
	2 m	nonths ago	
	C BNN-PYNQ-master 2 m	nonths ago	
	2 m	nonths ago	
	C getting_started 2 m	nonths ago	
	C logictools 2 m	nonths ago	
	2 m	nonths ago	
	C QNN-MO-PYNQ-master 2 m	nonths ago	
	🗆 🖉 Untitled ipynb 2 m	nonths ago	
	🗆 🖉 Welcome to Pynq.ipynb 2 m	nonths ago	
	D D BNN-PYNQ-master.zip 2 m	nonths ago	
	C C QNN-MO-PYNQ-master.zip 2 m	nonths ago	

INSTALLING PACKAGES ON PYNQ BOARD:

Example projects can be accessed from pynq website http://www.pynq.io/examples.

Install the example packages on pynq board by following below steps:

• Download the source code of the example project from github.

\leftarrow \rightarrow C \square github.com/Xilinx/BNN-PYNQ/		
🗰 Apps 🚻 Handshake 📝 Blackboard Learn 🕮 uhcle	eservices 📊 LinkedIn 🐵 SAP Web IDE Full-S 🔺 Matlab 🍾 Home Welcon	ne to 📕 Mail - Sura
♥♥♥ Why GitHub? ▼ Team Enterprise	Explore \vee Marketplace Pricing \vee	Search
₽ Xilinx / BNN-PYNQ		
<>Code ① Issues 7 1 ℃ Pull requests	🕞 Actions 🔟 Projects 🔅 Security 🗠 Insights	
🐉 master 👻 🤔 1 branch 🕤 0 tags	Go to file	⊻ Code +
ussamazahid96 and giuliogamba Imp	proved finnthesizer with vectorized implement 🔐 🗸 eb19cb5 on Feb 21	🕚 116 commits
bnn	Merged pull request from ussamazahid96	10 months ago
notebooks	Update LFC-BNN_Chars_Webcam.ipynb	2 years ago
tests	Added support for PYNQ on Ultra96. Added examples at different precis	2 years ago
🗅 .gitmodules	Added hls library as submodule and updated scripts (#117)	15 months ago

• Upload the code to jupyter notebook using UPLOAD option. Select the downloaded zip folder and click open.

0	Home	× +				_		×
~	→ C ▲ Not secure	e 192.168.2.99:9090/tree?		\$	🕑 🐠	C	* 5	:
A	pps 🚹 Handshake 🗾	Blackboard Learn 🗰 uhcl eservices	; in Linked	In 🐵 SAP Wei	DIDE Full-S		Matlab	**
💭 ງເ	upyter						Lo	ogout
Files	Running Clusters	8 Nbextensions					_	
Select it	ems to perform actions on t	hem.				Up	load ew	- 3
0 0	-						Lust Mod	dified
	🗅 base						2 months	ago ago
	💿 Open					×	2 months	ago ago
	← → ヾ ↑ 📙 « R/	A work > Examples ~	۹ ن	Search Examples			2 months	ago ago
	Organize 🔻 New fold	ler					2 months	ago
	Documents	Name ^		Date modified	Т	jype	2 months	ago
	Pictures	QNN-MO-PYNQ-master		12/14/2020 11:03	PM F	ile fi	2 months	ago
	📥 OneDrive - Univer	BNN-PYNQ-master		10/5/2020 6:25 PM	И V	VinR	2 months	200
	This PC	PYNQ-master		10/6/2020 2:24 PM	И V	VinR	2 11011113	rago
	3D Objects	UNN-MO-PYNQ-master		12/14/2020 11:04 12/15/2020 5:43 P	РМ V M Т	Vink Text I	2 months	s ago
	Desktop 🗸	<		12, 13, 2020 3.431		>	2 months	ago
	File r	ame: BNN-PYNQ-master	~		~		2 months	ago ago
		-	0	pen 😽	Cancel		2 months	ago ago
	ONN-MO-PYNO-master	zin					2 months	ado

• Open a new notebook and unzip the file using below code:

ڬ Jupyter		Logout
Files Running Clusters Nbextensions		
elect items to perform actions on them.	Uploa	ad New - 2
	Notebook: Python 3	d
D 🗅 base	Other:	30
🗆 🗅 bnn	Text File	Jo
BNN-PYNQ-master	Folder Terminal	30
	·······	<u></u>
CJupyter Untitled (autosaved)	(2 Logout
File Edit View Insert Cell Kernel Widgets Help	Trusted	Python 3 C
🖺 🕂 🕅 🔁 🛧 🖌 M Run 🔳 C Code 🗸 🖾		
<pre>In [1]: import zipfile with zipfile.ZipFile("BNN-PYNQ-master.zip", "r") as zip_ref zip_ref.extractall()</pre>	:	

• Then open a new terminal in jupyter notebook and run the setup.py file using "python3 setup.py install" command.

C BNN-PY	'NQ-master/	×	>_ root	t@pynq: /hom	e/xilinx/jupy	ter ×	+				_	
$\leftrightarrow \rightarrow c$	A Not	secure 192	.168.2.99	:9090/termir	nals/1		☆	ð	0	ABP	G	*
Apps	Handshake	💋 Blackboa	ard Learn	দেৱে uhcl ese	rvices in	LinkedIn	⊕ S/	AP Web	IDE F	ull-S	4	М
💭 јиру	ter											
root@pynq root@pynq	:/home/xili :/home/xili	nx# cd jup nx/jupyter	yter_not _noteboo	tebooks/BN oks/BNN-PY	N-PYNQ-ma NQ-master	aster r# pytho	on3 set	up.py	/ ins	tall		

• This will install the project package on board and create a directory in the jupyter home area.

Files	Running	Clusters	Nbextensions
Select iter	ns to perform act	ions on them.	
0	👻 🖿 / bnn		
C	J		
	D pictures		
	CNV-BNN_Cifa	ar10.ipynb	
	CNV-BNN_Roa	ad-Signs.ipynb	
	CNV-BNN_SVI	HN.ipynb	
	CNV-QNN_Cifa	ar10.ipynb	
	CNV-QNN_Cifa	ar10_Testset.ip	ynb
	CNV-QNN_Cifa	ar10_Webcam	ipynb
	LFC-BNN_Cha	rs_Webcam.ip	ynb
	EFC-BNN_MN	ST_Webcam.i	pynb
	EFC-QNN_MN	IST.ipynb	

EXAMPLE 1: ROAD SIGN RECOGNITION USING BNN

Source Code: https://github.com/Xilinx/BNN-PYNQ/

This example recognizes input image with a binarized neural network emphasizing 6 convolutional layers, 3 max pool layers, and 3 fully connected layers. It uses a German road-sign dataset and can classify 42 classes of road signs. The example has successfully identified the road signs from the given input images.

Input images are:

Launching BNN in hardware:

Inference took 4840.00 microseconds, 537.78 usec per image Classification rate: 1859.50 images per second Identified classes: [1 27 27 19 14 1 4 3 41] Identified class name: 30 Km/h Identified class name: Pedestrians in road ahead Identified class name: Pedestrians in road ahead Identified class name: Bend to left Identified class name: Stop Identified class name: 30 Km/h Identified class name: 70 Km/h Identified class name: 60 Km/h Identified class name: End of no-overtaking zone

Launching BNN in Software:

Inference took 14312376.00 microseconds, 1590264.00 usec per image Classification rate: 0.63 images per second Identified classes: [1 27 27 19 14 1 4 3 41] Identified class name: 30 Km/h Identified class name: Pedestrians in road ahead Identified class name: Pedestrians in road ahead Identified class name: Bend to left Identified class name: Stop Identified class name: 30 Km/h Identified class name: 70 Km/h Identified class name: 60 Km/h Identified class name: End of no-overtaking zone From the results, we can clearly notice that the time taken to identify road signs in input images in hardware is less than in software.

The below code snippet searches if there is any stop sign in the input image and locates if found.

```
results = classifier.classify_images(images)
end = results == 14
indicies = []
indicies = end.nonzero()[0]
from PIL import ImageDraw
im2 = Image.open(image_file)
draw2 = ImageDraw.Draw(im2)
for i in indicies:
    draw2.rectangle(bounds[i], outline='red')
im2
```

Inference took 289264.99 microseconds, 329.83 usec per image Classification rate: 3031.82 images per second

EXAMPLE 2A: FACE DETECTION USING OPEN CV

In this example, a webcamera is connected to the USB port of the board. The webcam captures the runtime images to which open cv face detection will be applied. The example detects and locates face and eyes from the image.

INPUT:

Step 4: Now use matplotlib to show image inside notebook

RESULT:

Step 7: Now use matplotlib to show image inside notebook

```
# Output OpenCV results via matplotlib
%matplotlib inline
from matplotlib import pyplot as plt
import numpy as np
plt.imshow(np_frame[:,:,[2,1,0]])
plt.show()
```


EXAMPLE 2B: EDGE DETECTION USING OPENCV

In this project, the USB camera is connected with the PYNQ USB Port. A Monitor is attached to the HDMI output port of the PYNQ board. Computer Vision-based edge detection algorithm like Canny Edge algorithm is applied to the real-time video using Python Programming. The result will be displayed on the monitor with edge detection applied.

INPUT

RESULT

EXAMPLE 3: OBJECT DETECTION USING QNN

Source Code: https://github.com/Xilinx/QNN-MO-PYNQ

In this project, a kind of Tiny-Yolo model was developed based on the Darknet network to recognize multiple objects. Each input image is associated with a single neural network. This network works by diving the image into multiple regions and predicting bounding boxes and probabilities for each region. The object is recognized and labeled as shown below with the probability.

The project classifies multiple objects in the input image with the respective probability as shown in the below images:

['car', ': 92%']

['car', ': 86%', 'dog', ': 86%', 'bicycle', ': 78%']

['car', ': 84%', 'car', ': 46%', 'person', ': 75%', 'bus', ': 30%']

REFERENCES:

- 1. Xilinx. PYNQ: Python Productivity for Zynq. url: http://www.pynq.io
- 2. TUL Corporation, "TUL PYNQ-Z2 Board Based on Xilinx Zynq SoC." 2020, url: http://www.tul.com.tw/ProductsPYNQ-Z2.html.
- 3. BNN-PYNQ PIP INSTALL Package. url: https://github.com/Xilinx/BNN-PYNQ/
- 4. QNN-MO-PYNQ PIP INSTALL Package. <u>url:https://github.com/Xilinx/QNN-MO-PYNQ</u>
- 5. OpenCV Face Detection HDMI url:https://github.com/Xilinx/PYNQ/blob/v2.0/boards/Pynq-Z1/base/notebooks/video/opencv_face_detect_hdmi.ipynb
- 6. OpenCV Filters Webcam. Url: <u>https://github.com/Xilinx/PYNQ/blob/v1.4/Pynq-Z1/notebooks/examples/opencv_filters_webcam.ipynb</u>
- 7. OpenCV Team. About OpenCV (Open Source Computer Vision Library). url: https://opencv.org/about/
- Joseph Redmon et al. "You Only Look Once: Unified, Real-Time Object Detection". In: CoRR abs/1506.02640 (2015). arXiv: 1506.02640. url: <u>http://arxiv.org/abs/1506.02640</u>.
- T. Wu, Y. Wang, W. Shi and J. Lu, "HydraMini: An FPGA-based Affordable Research and Education Platform for Autonomous Driving," 2020 International Conference on Connected and Autonomous Driving (MetroCAD), Detroit, MI, USA, 2020, pp. 45-52, doi: 10.1109/MetroCAD48866.2020.00016.
- 10. Xilinx Inc., "Zynq-7000 SoC product." 2020, url:<u>https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html</u>
- 11. V. Y. Çambay, A. Uçar and M. A. Arserim, "Object Detection on FPGAs and GPUs by Using Accelerated Deep Learning," 2019 International Artificial Intelligence and Data Processing Symposium (IDAP), Malatya, Turkey, 2019, pp. 1-5, doi: 10.1109/IDAP.2019.8875870.