
Open Source Design and Verification Environment

1st Xiaokun Yang
Engineering Department

University of Houston Clear Lake
Houston, USA

yangxia@uhcl.edu

2nd Yunxiang Zhang
Engineering Department

University of Houston Clear Lake
Houston, USA

3th Lei Wu
Computer Science Department

Auburn University at Montgomery
Montgomery, USA

Abstract—This paper presents a scalable image/video pro-
cessing platform on Field-Programmable Gate Array (FPGA),
capable of capturing images via a low-cost OV7670 camera and
in real time displaying the original, in-process, and final results
of images on a VGA-interfaced monitor. To make the platform
expandable and reusable, not only is the design with Verilog
hardware description language (HDL) offered, but also the veri-
fication environment including six open verification components
(OVCs) is provided. To the best of our knowledge, this proposed
work costs the least FPGA resource (753 LUTs and 277 Register)
compared to the existing open source implementations on the
design of the Camera-FPGA-VGA data path.

We make this platform publicly available to encourage future
research projects on image/video processing, computer vision,
machine learning, etc., and to serve educational studies on digital
system design with Verilog HDL and FPGAs.

Index Terms—Field-Programmable Gate Array (FPGA), hard-
ware description language (HDL), Verification

I. INTRODUCTION

The rapid growth in computer vision applications such as
object and facial recognition imposes many challenges of
computation speed and energy savings on traditional soft-
ware based frameworks [1], [2]. Due to the benefits of
programmability and parallel computing on pure hardware
design, recently the implementation on Field-Programmable
Gate Array (FPGA) is becoming widely used in executing
many image/video processing tasks [3].

Under this context, this paper proposes an open source
image/video processing platform, enabling to capture frames
of images by interfacing a low-cost OV7670 camera and in
real time display both the original images and the results of
processed images on a VGA-interfaced monitor. Specifically
we presents our framework able to simultaneously display up
to four 320 × 240 images in a 640 × 480 window, capable
of showing the in-process images, the final results of the
images, as well as the original images through the VGA
interface. As a case study, we design a simple color to binary
converter with two submodules - color to grayscale converter
and then grayscale to binary converter. We demonstrate the
validity of showing all the original color images captured
from the OV7670 camera, the inter-process grayscale images,
and the final binary images in different regions via the VGA
master. The Design-Under-Test (DUT) was written by Verilog

HDL and tested on the Nexys 4 FPGA, and the verification
environment can be automatically run on ModelSim Simulator.
The main contributions of this work are:

• To make the design reusable and expandable, not only
was the DUT provided but also a verification environment
including tcl script, filelist, and testbench with six open
verification models (OVCs) like bus function models
(BFMs) and scoreboards, was offered. We expect that
the public release of this platform will lead to better
implementations in the future, as well as to generate many
application-specific designs on teaching and research in
image/video processing, computer vision, machine learn-
ing, etc.

• In simulation, each design module - the I2C master,
Image Capture slave, or VGA master, has been equipped
with a bus function model for driving the interface, and a
scoreboard for testing functions as well. The scoreboards
are controllable by the tcl script to compare data between
DUT and golden models, in order to automatically verify
the system functions and to increase the re-usability and
credibility of the publicly available design sources.

• We evaluated the design performance in terms of slice
count and power consumption. As far as we know, our
proposed work costs the least FPGA resource - 753 slices
as Look-up-Tables (LUTs) and 277 slices as Registers,
compared to all the open source implementations on
the design of Camera-FPGA-Monitor data path. And the
power consumption is around 220 mW for displaying and
processing one frame of color image.

The organization of this paper is as follows. Section ??
briefly introduces the related works and III presents our
work with design architecture and verification environment.
Section IV discusses the implementation of data path and
Section V depicts the details of the verification environment.
In Section VI, the experimental results in terms of hardware
cost, power consumption, and FPGA prototype are shown.
Finally, Section VII presents the concluding remarks in our
target architecture.

II. RELATED WORKS

Prior works in applications of image/video processing on
FPGA mainly focused on high-level synthesis (HLS) and

A Scalable Image/Video Processing Platform with

978-1-7281-0392-1/19/$31.00 ©2019 IEEE 110 20th Int'l Symposium on Quality Electronic Design

block designs, and sometimes with software/GPU involved.
For example, [10] proposed a design on a real-time image
acquisition and pre-processing FPGA by using LabVIEW
with GPU-based acceleration that is capable of sustaining
the rate of data acquisition. And in [11], an integration of
a camera with frame grabber on LabView, a mask creating on
MatLab, and an image processing module on LabView FPGA
has been presented. It is useful to demonstrate a system by
directly using the black-box based designs, but to customize
or improve the system is hard because the block libraries are
usually not open source or changeable by users.

Under this context, many register-transfer level (RTL) de-
signs on the Camera-FPGA-VGA data path have been pro-
posed. For example, the implementation in [8] has been
widely used to prototype or test new research ideas related to
image/video processing systems. It is written by VHDL and
performed on Zedboard FPGA. Additionally, a reconfigurable
platform on Virtex-4SX35 FPGA has been presented in [9],
enabling to preform edge detection by interfacing an OV7610
camera as image input and VGA as the result output. However,
because the FPGA resource cost and power consumption have
not been presented in these two works, the design performance
is not able to be compared and estimated.

In [12], [13], an open source project with digital camera
on FPGA has been proposed. The project was designed by
using VHDL and prototyped on Altera DE2-115 FPGA. It
consumed 1,616 logic elements and 818 registers. The main
concern of this open source project is the lack of a verification
environment, making the design hard to be expanded and
improved.

To tackle aforementioned issues, this paper presents a
scalable image/video processing platform with Verilog HDL
on Nexys 4 FPGA, containing both design and verification
environment.

III. PROPOSED WORK

In this section, the design structure on the image/video
processing platform is discussed. Moreover the verification
environment is presented to make the open source platform
expandable and reusable.

A. Design Architecture of Image/Video Processing Platform

Fig. 1 shows the design architecture of the image/video
processing platform, capable of capturing images in 320×240
and displaying the original images, in-process images, and the
final results of processed images in a 640× 480 window.

Basically the platform contains three interfaces - the I2C
master, Image Capture slave, and VGA master, as well as four
Frame Buffers and one PLL instantiation. The I2C master is
designed to configure the functional registers released by the
OV7670 camera [4]. After configuration, the camera enables
to capture images and send them pixel by pixel through
“VSYNC-HREF-DATA” interface. The Image Capture slave
receives the images and stores them into four Frame Buffers,
320×240 = 76, 800 pixels/bytes for each. In other word, each
buffer is able to store one frame of 320× 240 image.

Fig. 1. Design Architecture of the Image/Video Processing Platform

Finally the VGA master creates the “HSYNC-VSYNC”
timing for displaying the images on VGA-interfaced monitor.
In this case we split the 640×480 window into four 320×240
regions, as shown in Fig. 2. The Region0 is used to display
data read from the Frame Buffer0. And the Region1, Region2,
and Region3 display the data processed by three different
algorithms, Alg1, Alg2, and Alg3, respectively. Notice that the
implementations of the algorithms may be interconnected or
inter-operated. For performing a complex algorithm, multiple
clock cycles and many buffers/FIFOs might be required.

Fig. 2. 640× 480 window with four 320× 240 regions

B. Verification Environment

Fig. 3 depicts the entire open source packet, including not
only the DUT with synthesizable Verilog HDL, but also a
configurable verification environment. In particular, the green
box represents the design hierarchy with three different levels,
from top datapath design to submodules. The synthesis files
are in the orange box, containing a constrain file, a netlist for
FPGA programming, and the synthesis results in terms of slice
count and power cost.

In this work we emphasize the verification environment,
which is shown in the blue box. Generally it includes a tcl
script, a filelist, and a testbench. The tcl script is used to
automatically run the simulation, and configure the DUT and
OVCs working in different modes. The filelist maintains all
the design and verification components.

In the testbench, three bus function models and three score-
boards are provided as OVCs. For example, a Capture master
BFM is required to send images to the DUT. The input images
come from an image input file named as “rgb565 input.txt”.
The data in this file is in the RGB565 format - 5-bit red pixel,
6-bit green pixel, and 5-bit blue pixel. Thus each pixel transfer

Fig. 3. Open Source Design, Verification, and Synthesis

takes two cycles, 8 bits per cycle. Likewise, an I2C slave BFM
is created to receive and response to the commands from I2C
master, and a VGA slave is needed to collect the images from
the VGA interface.

Furthermore, three scoreboards are presented in the test-
bench to check the results of each design interface. For
example, the I2C scoreboard compares each command sent
by the I2C master with the original register configuration.
To test the images stored into the Frame Buffers and the
images driven on the VGA port, two golden models or four
golden files are provided. The Capture scoreboard compares
the data written into Frame Buffers with the golden data in
“golden rgb444.txt” file. Similarly, the red, green, and blue
pixels driven by the VGA master should be compared with
the data in golden r.txt, golden g.txt, and golden b.txt files,
respectively. The details of the design on each BFM and OVC
will be discussed in the V sections.

IV. DESIGN UNDER TEST (DUT)

In this section, all the design submodules and IPs are
introduced, including one I2C master, one Image Capture
slave, one VGA master, and two IPs - the clock PLL and
Frame Buffers as well.

A. I2C Master Design

In our work, we use the low-cost OV7670 camera to provide
windowed images in a wide range of format, controlled
through the I2C interface. Hence, first an I2C master is needed
to configure the functional registers offered by the camera. The
I2C slave has an 8-bit ID that needs to be unique on the bus,
“0x42” for a specified write command and “0x43” for a read.

As per the OV7670 datasheet [4], the serial clock (“SIOC”)
provided by the I2C master should be less than 400KHz.
Using a 50MHz clock as input, we produce the “SIOC” signal
around 200KHz. Additionally I2C communication typically
applies transfers of 8 bits or bytes on serial data (“SIOD”).
As an example of the timing shown in Fig. 4, the I2C master
sequentially sends a “WRITE” command to camera by driving
the first byte as the unique device ID, and the second and third
bytes as the register address and value.

Fig. 4. I2C Controller Timing

B. Image Capture Slave Design

Using the I2C master interface, we configure the OV7670
camera to capture images in the format of 320× 240 Quarter
Video Graphics Array (QVGA), by writing functional register
“0x12” with “0x14” [4]. Most of the other register configura-
tions are referred from prior work [8].

After that, the camera enables to send images into the
DUT through “VSYNC-HREF-DIN” interface. By receiving
the valid pixels, three basic operations of the design on Image
Capture slave are required: 1) collecting valid data input
following the “VSYNC-HREF-DIN” timing shown in Fig. 5,
two cycles for receiving each RGB565 pixel - 5-bit red, 6-bit
green, and 5-bit blue; 2) converting the 16-bit RGB565 pixel
into 12-bit data output - each 4 bits representing either a red,
green, or blue pixel; 3) generating write data commands to
store the frames of images into the Frame Buffers.

Fig. 5. Image Capture Timing

C. VGA Master Design

In what follows, a VGA master is needed to display
videos on a VGA-interfaced monitor. As per the VGA timing
standardized in [5], the Nexys 4 board uses 14 FPGA signals
to create a VGA port with four bits-per-color and the two
standard sync signals, horizontal sync (“HSYNC”) and vertical
sync (“VSYNC”). The “VSYNC” signal defines the “refresh”
frequency of the display, or the frequency at which all in-
formation on the display is redrawn. The minimum refresh
frequency is a function of the display’s phosphor and electron
beam intensity, with practical refresh frequencies falling in the
50HZ to 120Hz range.

The number of lines to be displayed at a given refresh
frequency defines the horizontal “retrace” frequency. For a
640× 480 display using a 25 MHz pixel clock and 60 +/-1Hz
refresh, the signal timings shown in Fig. 6 can be derived.
Timings for pre- and post-sync pulse times during which
information cannot be displayed are named as front porch (FP)
and back porch (BP). The porch interval between two lines or

TABLE I
VGA TIMING FOR 640× 480 IMAGES

Symbol VSYNC HSYNC
Time (us) Clock Lines Time (us) Clock

H/VSP 16,700 416,800 521 32 800
H/VDIS 15,360 384,000 480 25.6 640
H/VPW 64 1,600 2 3.84 96
H/VFP 320 8,000 10 0.64 16
H/VBP 928 23,200 29 1.92 48

frames of images is the pulse width (PW). Together with the
display (DIS) time, the total sync pulse (SP) can be computed
as SP = FP + PW +BP +DIS.

Fig. 6. VGA Timing

In particular, Table I shows the VGA system timing infor-
mation of how a VGA-enabled monitor will be driven in the
640 × 480 mode. In this case the time interval of displaying
one frame of image is V SP = V FP + V PW + V BP +
V DIS = 16.7 ms. Hence, the refresh frequency of the display
is 1/V SP = 59.88 Hz.

D. Display Regions

Basically the window size of 640 × 480 is able to si-
multaneously display four 320 × 240 images. To identify
different regions, two counters are created to realize the
timing, “hcnt” for horizontal sync and “vcnt” for vertical
sync. As shown in Fig. 7, when “hcnt” is in the cycles of
HBP ∼ (HBP +319), the region0 and region2 are selected.
And the region1 and region3 are asserted when “hcnt” is in the
cycles of (HBP +320) ∼ (HBP +639). Likewise, while the
“vcnt” is in the cycles of V BP ∼ (V BP +239), region0 and
region1 are selected. And in (V BP + 240) ∼ (V BP + 479),
region2 and region3 are selected.

Fig. 7. Region Display Timing

As a case study, in region0 the original images are dis-
played. And in region1, region2, and region3, respectively, the
black, grayscale, and binary images are displayed. Theoreti-
cally the grayscale images can be computed by

grayscale = 0.299×R+ 0.587×G+ 0.114×B (1)

where R, G, and B represents pixels of red, green, and blue
pixels, respectively. To simplify the design, Eq. 1 can be
approximated as

grayscale = {R,R} >> 2 + {G,G} >> 1 + {B,B} >> 4.
(2)

Here, the operator “�” comes from the Verilog HDL Stan-
dard, meaning that performs right shift of the left operand
by the number of bit positions given by the right operand.
For example, “R � 2” indicates right shifting of the red
pixel by 2 bits or multiplying each red pixel by 4. The
operator “{}” represents the concatenation. “{R,R}” means
that concatenates two 4-bit red pixel as an 8-bit red pixel, in
order to increase the contrast of the grayscale pixel.

Based on the grayscale output, the binary converter can
be simply designed as a 4-bit comparator. Assume that the
threshold is hexidecimal “0x8”. The grayscale pixel greater
than “0x8” would be displayed as white (“0xf”). On the
contrary, the grayscale pixel less than or equal to “0x8” would
be displayed as black (“0x0”).

E. IPs of PLL and Frame Buffer

In this data path, five IPs are generated using Vivado
software, one PLL and four Block RAMs. As shown in
Fig. 8(a), the PLL is used to distribute two clocks with 50MHz
and 25MHz. The 50MHz clock is used by I2C master, and the
25MHz clock is applied by the VGA master, as summarized in
Table II. The I2C serial clock produced by the I2C master is
around 200KHz. Notice that the clock of Image Capture slave
comes from the OV7670 Camera. It is measured as around
20MHz.

Fig. 8. IP Configuration

In Fig. 8(b), the Frame Buffer is configured with asyn-
chronous “WRITE” and “READ” operations based on a
320 × 240 × 12bits = 76, 800 × 12bits Block RAM. The
“WRITE” clock is the pixel clock (“PClk” around 20 MHz)
from the Image Capture slave. And the VGA master performs
the data read so the clock is “Clk 25MHz” from the PLL.
For displaying four 320× 240 images in parallel, totally four
Frame Buffers are needed.

TABLE II
CLOCKS FOR THE DUT

Clock Input From Freq.
(MHZ)

Clk 100MHz Clock Generator FPGA 100
Clk 50MHz I2C Master PLL Output 50

Clk 25MHz 1) VGA Master
2) Frame Buffer (Clkb) PLL Output 25

PClk 1) Image Capture Slave
2) Frame Buffer (Clka)

Camera
OV7670 20

SIOC Camera Register I2C Master 0.2

V. DESIGN FOR VERIFICATION (DV)

In this section, six OVCs - including three bus function
models and three scoreboards, are created for testing the
functions of the data path. And then a typical simulation report
generated by the scoreboards is discussed.

A. Open Verification Components (OVCs)

In order to drive or trace interconnected signals and IOs,
three bus function models - the Capture master BFM, I2C
slave BFM, and VGA slave BFM, are offered. As per the
timing requirements discussed in Fig. 5, the Capture master
BFM generates the control signals “VSYNC-HREF” and feeds
in the images with an 8-bit “DIN” bus. Likewise, I2C slave
BFM collects the serial data (“SIOD”) at each rising edge of
the clock (“SIOC”) as shown in Fig. 4. And the VGA slave
BFM captures red, green, and blue pixels by identifying the
“VSYNC-HSYNC” valid signals as per the timing diagram
shown in Fig. 6.

Additionally three scoreboards - the Image Capture score-
board, I2C scoreboard, and the VGA scoreboard, for testing
the functions and timings of the three design interfaces are
provided. For example, each 24-bit data frame collected by
the I2C slave BFM should be compared with the register
configuration command, which is composed of the 8-bit ID,
8-bit register address, and 8-bit resister data. The Capture
scoreboard is used to compare the Frame Buffer input with
the data in golden rgb444.txt file, and the VGA scoreboard is
applied to check the VGA output with the data in golden r.txt,
golden g.txt, and the golden b.txt files.

Fig. 9. Testbench with OVCs

B. Simulation Report

The DUT can be configured in simulation mode or synthesis
mode by a control script shown in Fig 10. Notice that the
five IPs discussed in IV-E will be only used in the synthesis
mode. When the open source platform is configured as in
the simulation mode, two equivalent models will be employed
instead. Additionally the verification environment is also con-
figurable through the tcl script. For example, the three score-
boards are able to be turned on and off by three definitions:
“DEBUG CAP”, “DEBUG I2C”, and “DEBUG VGA”.

Fig. 10. DUT and Verification Environment Configuration

Fig. 11 shows the simulation report by turning on all
the three scoreboards. It can be observed that the register
configuration completes around 9ms for writing 56 registers.
After that, the Capture master BFM enables to send pixels in
RGB656 format, 8 bits per clock cycle. Then the DUT collects
and converts the data from RGB565 mode into RGB444 type,
and writes the 12-bit pixels into Frame Buffers. The Frame
Buffer interface is monitored by Image Capture scoreboard.
Meantime the 12-bit pixels are read out from the Frame
Buffers, computed by image processing algorithms, and finally
displayed as 4-bit red, 4-bit green, 4-bit blue in parallel via the
VGA interface. The timing is checked by the VGA scoreboard.

Fig. 11. Simulation Report by Scoreboards

TABLE III
RESOURCE COST OF OUR WORK

Name Slice LUTs Slice Registers RAM IO
blk mem0 134 11 26.5 0
blk mem1 134 11 26.5 0
blk mem2 134 11 26.5 0
blk mem3 134 11 26.5 0
image caputure 2 43 0 0
ov7670 controller 87 90 0 0
vga 134 100 0 0
Top 753 277 106 34

TABLE IV
RESOURCE COST COMPARISON

Resource Cost [12,13] [11] Our work
Devices Altera DE-115 Xilinx Virtex 5 Xilinx Nexys 4
Slice LUTs 1,616 10,283 753
Slice Registers 818 9,974 277
Block RAMs - 52 106
IOs 94 - 34

VI. EXPERIMENTAL RESULTS

In this section, we employ Mentor Graphic ModelSim 10.4d
as the simulator and Xilinx Vivado as the synthesis and
implementation tool with the target device Nexys 4 FPGA.

A. FPGA Resource Cost

In Table III, the resource cost is summarized in terms of
slice count, RAM utilization, and the number of IOs. As shown
in the second and third columns, the number of slice LUTs
and slice Registers are 753 and 277, respectively. In the fourth
and fifth columns, it can be observed that 106 RAMs and 34
IOs are used by this platform.

Furthermore, we compare our design with the existing
works in Table IV. The third column shows the resource
cost on a design of image acquisition and processing using
LabView FPGA [11]. It is obvious that the design consumes
much more hardware resource compared to the RTL designs
in the second and fourth columns.

[12], [13] implemented color to grayscale conversion and
edge detection with VHDL on Altera DE-115. Compared with
the resource cost shown in the second column, our proposed
design reduces the slice of LUTs by 53.4% and the slice of
registers by 66.1%, and consumes less than a half of the IOs.
The reduced number of logics and IOs has a great potential
to lower the switching activities of signals, resulting in less
power consumption on FPGA development.

B. Power Consumption

Table V demonstrates the abbreviated breakdown of power
estimation report generated by Xpower Analyzer [6], [7]. It
can be observed that the static power consumption (SP) is
102 mW as shown in the eighth column and dynamic power
cost (DP) is 118 mW with the total power consumption (TP)
of 220 mW.

Due to the reduced-complexity design, the power dissipation
decided by the toggle rate of clock, signals, logics, and IOs

TABLE V
POWER CONSUMPTION ON NEXYS 4 FPGA

TP
(mW)

DP (mW) SP
(mW)Clock Signal Logic BRAM PLL I/O

220 2 4 1 10 97 4 102 mW

is only 11 mW or 9.3% of the dynamic power cost, as shown
in the second, third, and fourth columns. And the remaining
power consumption is mainly come from the BRAM and PLL,
totally 107mW or 90.7% of the dynamic power cost. The
power cost has not been estimated in [11]–[13], it is thus not
able to compare the power dissipation with the prior work.

C. FPGA Prototype

After programming the netlist on the Xilinx Nexys 4 FPGA,
Fig. 12 demonstrates the application of displaying original
video in Region0, and the processed images in grayscale and
binary in Region2 and Region3 in parallel. In Region1, the
displayed images are all black pixels.

Fig. 12. FPGA Prototype

VII. CONCLUSION

This paper presents a scalable image/video processing plat-
form on FPGAs containing both open source design and
verification environment. Compared to the prior open source
projects, our work reduces the slice utilization and offers a
potential to improve the power efficiency. More important,
this platform is reusable and expandable to a diverse range
of applications in image processing and computer vision
on FPGAs. We expect that our public release of the entire
implementation will lead to multiple designs in the future, and
serve as a framework to projects of research and education.

REFERENCES

[1] H. He, et al., “Dual Long Short-Term Memory Networks for Sub-
Character Representation Learning,” The 15th Intl. Conf. on Information
Technology - New Generations (ITNG-2018), Jan. 2018.

[2] L. Nwosu, et al., “Deep Convolutional Neural Network for Facial
Expression Recognition Using Facial Parts,” 15th IEEE Intl Conf. on
Dependable, Autonomic and Secure Computing, Feb. 2018.

[3] A. Gajjar, et al, “An FPGA Synthesis of Face Detection Algorithm using
HAAR Classifiers,” Intl. Conf. on Algorithms, Computing and Systems
(ICACS2018), PP.133-137, July 27-29, Beijing China, 2018.

[4] OV7670 Datasheet, Version 1.01, OmmiVision Technologies, Sunnyvale,
CA, USA, 2005.

[5] Nexys 4 FPGA Board Reference Manual, Rev. B, Digilent, Sunnyvale,
CA, USA, April 2016.

[6] X. Yang, et al., “A Novel Bus Transfer Mode: Block Transfer and A
Performance Evaluation Methodology,” Elsevier, Integration, the VLSI
Journal, Vol. 52, PP. 23-33, Jan. 2016.

[7] X Yang, et al., “A low-cost and high-performance embedded system
architecture and an evaluation methodology,” 2014 IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), PP. 240-243, July 2014.

[8] M. Field (2013, Jan.). “http://www.hamsterworks.co.nz/mediawiki/index.php
/Zedboard OV7670.”

[9] M. Birla, “FPGA Based Reconfigurable Platform for Complex Image
Processing,” 2006 IEEE Intl. Conf. on Electro/Information Technology,
PP. 204-209, May. 2006.

[10] K. Jin, et al., “High-speed FPGA-GPU processing for 3D-OCT imag-
ing,” 3rd IEEE Intl. Conf. on Computer and Communications (ICCC),
PP. 2085-2088, March 2018.

[11] S. Rahangdale, et al., “MBSEM image acquisition and image processing
in LabView FPGA,” 2016 Intl. Conf. on Systems, Signals and Image
Processing (IWSSIP), PP. 1-4, July 2016.

[12] C. Ababei, et al., “Open source digital camera on field programmable
gate arrays,” Intl. Journal of Handheld Computing Research (IJHCR),
Vol. 7, No. 4, PP. 30-40, 2016.

[13] C. Ababei, et al., “Open source digital camera on field programmable
gate arrays,” IEEE Intl. Conf. on Electro Information Technology (EIT),
Grand Forks, ND, May 2016.

