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Abstract—This paper presents an open audio processing plat-
form on Zync7000 Field-Programmable Gate Array (FPGA),
capable of collecting analog frequency signals through a micro-
phone, and pushing out a data set of frequencies and amplitudes
to a UART interface. The validity of this platform has been
proved by a design on a real-time automatic music transcription
(AMT) system, mainly containing three algorithms run on the
Zync processor including Discrete Fourier Transform (DFT),
vector building with Pitch Class Profile (PCP), and pattern
matching. Experimental results show that the accuracy of the
chord detection can reach 90% while playing open chords, and
the latency of analog sampling is around 250 ms.

We make this platform publicly available to encourage future
research in audio processing such as speech recognition and
natural language processing, and to serve educational studies
on digital system and embedded system implementations with
hardware-software co-design FPGAs.

Index Terms—audio processing, digital system design, field-
programmable gate array (FPGA), hardware-software co-design

I. INTRODUCTION

Today, audio processing systems, such as the automatic mu-
sic transcription (AMT), automatic speech recognition (ASR),
and the wider field of natural language processing (NLP), show
a clear potential for both economic and societal impact [1].
As a fascinating example of their applications, the devices of
Amazon Alexa and Google Home have been widely used as
control centers of smart home/building platforms, including
audio signal processing and artificial intelligence (AI) in
enabling technologies with Amazon Cloud and Google Cloud.
Furthermore, due to the benefits of processing data on the AI-
enabled integrated circuit (IC), for example the low-latency
response and parallel computing, the implementation on the
audio processing system-on-chips (SoC) is becoming one of
the most inexpensive and energy-efficiency solutions for such
real-time systems [14], [15].

Under this context, this paper presents an open platform
on audio processing with Zync FPGA, providing a way to test
the functionality with FPGA before taping out the application-
specific IC (ASIC). More important, our proposed system
can be used during the earlier stage of the project due to
the integration of the software programmability of an ARM
processor with the hardware programmability of the FPGA.

As shown in Fig. 1, more specifically, the traditional
FPGA design starts from the register-transfer-level (RTL)

programming and ends up with the final synthesis netlist.
The functionality is not able to be demonstrated until the
completion of the FPGA design flow. However, our proposed
work allows the hardware-software co-design on Zync FPGA:
the algorithms can be directly run on the ARM processor,
or the programming system (PS); the designs with hardware
programming language (HDL) and intellectual properties (IPs)
provided by the FPGA can be programmed on the program-
ming logic (PL) [11], [12]. In such a way the design with
FPGA can be tested at an earlier stage to shorten the time-
to-market and reduce the cost of development and tape-out
risk.

Overall, the main contributions of this work are:

Fig. 1. FPGA Design Flow

• We presented an open audio processing platform contain-
ing the block-based design and the synthesis results in
terms of slice count and power consumption. We expect
that the public release of this platform is able to lead to
better implementations in the future, as well as to gen-
erate many application-specific designs in teaching and
doing research in audio processing, speech recognition,
natural language processing, etc.

• We tested the validity of using this platform with an
application of automating music transcription, which is
able to extract the frequencies from a live recording
and then analyze the given frequencies to find specific
chords played by the user. Experimental results show that
the design on hardware and software can be seamlessly
integrated by using the application programming interface
(API) and drivers provided by the Zync FPGA.

The organization of this paper is as follows. Section II
briefly introduces the related works and III presents our work



with design architecture. Section IV discusses the implemen-
tation of the proposed system. In Section V, the experimental
results in terms of accuracy and latency of the system, as well
as the slice cost and power consumption on FPGA are shown.
Finally, Section VI presents the concluding remarks in our
target architecture.

II. RELATED WORKS

Prior research in audio processing platforms mainly based
on embedded systems or DSPs, such as the implementation of
personal sound amplification product (PSAP) using binaural
microphones/earphones and a Raspberry Pi [4], an advanced
sound system operated by DSP boards [3], an object-based
audio representation [2], a platform for embedded speech
analysis and synthesis [5], location-aware speakers [6], and
predictive real-time beat tracking [7].

To make data processing in real time, particularly for time-
sensitive applications like the music transposer and speech
recognition, accelerators like FPGA have been widely used
in audio processing prototypes. For example, in [9] an FPGA
acceleration for tracking audio effects in movies has been
presented, and [10] proposed a custom multi-core hardware
accelerators for both algorithms and map them onto Virtex6
FPGAs. Results showed that FPGA implementations can
provide more power-effective solutions, due to the parallel
computing on hardware design and capability to drive more
complex microphone and loudspeaker setups than PC-based
approaches [10]. Additionally an implementation of audio
signal processing and display system has been proposed in [8].
Since the design specification is not publicly available, the
hardware cost and system performance are not able to be
compared.

To tackle the aforementioned issues, a scalable audio pro-
cessing system is presented with the hardware-software co-
design platform on Zync7000 FPGA. The availability of this
open platform is able to minimize setup-time when testing and
benchmarking new audio processing projects. The application
of this platform has been tested on an automatic music trans-
poser, enabling the automatic generation of detected chords by
means of real-time recordings.

III. PROPOSED OPEN PLATFORM

Fig. 2 shows the hardware architecture of our proposed
work. It can be divided into two parts. The first part is
the programming logic (PL), including the HDL design and
IPs offered by the specific FPGA. In our case, an analog
audio codec is instantiated to provide integrated digital audio
processing to the Zynq7000 SoC. It allows for stereo record
and playback at sample rates from 8 kHz to 96 kHz. The audio
data is transferred via the I2S protocol as shown in Fig. 3.

To use the audio codec in a design with non-default settings,
it needs to be configured over an I2C bus. The device address
is binary 0011010 or hexdecimal 1A. The audio path needs
to be established by configuring the (de)multiplexers and
amplifiers in the codec. Some digital processing can also be
done in the codec. Configuration is read out and written by

Fig. 2. Hardware Architecture

Fig. 3. I2S Timing Diagram

accessing the register map via I2C transfers shown in Fig. 4.
The register map is described in the SSM2603 datasheet [13].

Fig. 4. I2C Timing Diagram

The second part is the processing system (PS), including the
algorithms of audio processing run on the ARM processor.
The hardware interface between the processing system and
processing logic is based on the AXI3 specification [18].

During the ASIC/FPGA design flow, the design and verifica-
tion in the behavioral model or register-transfer level is very
time consuming. Using the programming system offered by
Xilinx Zync, it is able to test the functionality in the algorithm
level, which is an earlier stage compared to the register-transfer
level, as shown in Fig. 1. In other words, all algorithms are
able to be written as C-code software to be run by the Cortex
A9 processor present on the Zybo Z7. Together with the IP
blocks and resource provided by the Zync SoC, the design on
the system can be tested before performing the RTL coding.

IV. IMPLEMENTATION

In this section, the open platform introduced in Section III
is implemented. After that, a demonstration of guitar music
transcription is used to test the validity of our proposed work.

A. Block Based Design with Proposed Work

Fig. 5 shows the block based design on Zync FPGA. The
development of the first stage using the Zybo Z7 board has
been through the use of two main software: Xilinx Vivado and
Xilinx Software Development Kit (SDK).



On the hardware itself, the parts used includes the MIC
IN interface for use with a 3.5mm coaxial cable connected to
a microphone, as well as the microUSB port to communicate
with the external devices. The Zybo Z7 has an Analog Devices
SSM2603 Audio Codec which provides the audio processing
required by our project. The SSM2603 is programmed on-
board through the I2C protocol.

Fig. 5. The Block Based Design.

a) Block Based Design: Using Xilinx Vivado, we create
a hardware level design which includes an IP for the audio
device that was present in one of the tutorial designs available
from the Zynq book website [25]. The Zybo Audio Control
IP is used to communicate with and program the on-board
SSM2603 audio codec. The hardware block diagram is im-
plemented and the bitstream is generated which is exported
to the SDK. The implementation of the design includes the
aforementioned IP, an IP to program the Zynq processor, and
C code that handles all data manipulation and processing
algorithms.

Xilinx SDK is where the software control for the design is
created. The SDK allows us to create projects using both C
and C++. Each IP from Xilinx Vivado has specific source and
header files that must be imported into the project in order to
call the functions associated with the IP. For example, the IP
used to program the SSM2603 has function calls which follow
the I2C protocol to properly write data to the registers on the
audio codec.

The imported bitstream from Xilinx Vivado includes the
memory address map for the design and defines all of the
device’s memory addresses in a parameters header file. It is the
SDK that allows you to program the FPGA with the generated
bitstream, and then launch the C or C++ level code on the
FPGA.

b) Audio Codec Programming and Sampling: Upon the
exportation of the bitstream from Xilinx Vivado, the first
part in developing the C code includes programming the
audio codec and sampling the microphone. By referencing
the SSM2603 data sheet [13], one can program the SSM2603
registers, using I2C code, in order to adjust microphone/line-
in enables, input and output volume control, sample data bit
size, sampling speed, and much more.

Our project changes a few things from the default register
configuration: we turn power on for the microphone input
(R6), we adjust sidetone attenuation to -15dB, select DAC,
disable bypass, set microphone as the in select, and disable
the mute on the microphone data path (R4), we disable the
DAC mute (R5), set the data to 32 bit unsigned integers (R7),
and set the sampling rate to 8, 000Hz (R8). All these changes
are necessary to ensure that the audio codec properly samples
data for use in our program.

After the audio codec is properly configured in the code, the
second process is to sample the data. In order to achieve a bin
width of < 4Hz, with a sampling rate of 8, 000Hz, our sample
size, denoted as N , would need to be 2048. Instantiating an
array of 2048, unsigned long (32 bit) integers allow us to
declare memory space for the sample sets. Our design reads
from the audio codec register that stores data sampled from the
microphone and saves that data into the array. To ensure that
each data entry is unique, a short if-statement is introduced to
compare the current index with the previous index.

B. Demonstration

With the utilization of the open platform, a music tran-
scription system is demonstrated to test the validity of our
open platform. A typical data representation used in a music
transcription system is introduced in Fig. 6. It basically takes
an audio waveform as input, computes a time-frequency rep-
resentation, and outputs a representation of pitches over time.

Fig. 6. Datapath for an AMT system with use in chords

More specifically, the system enables the extraction of the
frequencies from a live recording and then analyzes the given
frequencies to find specific chords played by the user. The
method by which we analyze samples is by Discrete Fourier
Transform (DFT).

The resultant frequency spectrum must then be processed
by the Pitch Class Profile (PCP) algorithm to extract the pitch



class of the samples [19]. The pitch class is then referenced
to existing templates in order to store the found chord to
the database. The database will keep records of the chords
input, as well as the time the chord received. With both chord
data and time data, it is possible to write out sheet music
corresponding to the user’s playing.

a) Discrete Fourier Transform: All audio exists as sinu-
soidal waves in the frequency spectrum and the human ear can
detect from as low as 20 Hz and as high as 20,000 Hz [21].
Considering a guitar music transcription, the lowest frequency
on a standard tuned guitar is the second octave E at 82.407
Hz, and the highest note ranges around the fifth octave B at
987.767 Hz [24], as shown in Fig. 7. By recording audio and
analyzing the sinusoidal waves for its frequency spectrum, one
can determine what frequencies are present in a given audio
signal.

Fig. 7. Guitar Frets & Their Notes vs Frequencies

The basic equation used to convert the sampled analog input
into the frequency domain is

Xk =

N−1∑
n=0

xn × (cos(
2πkn

N
)–i× sin(2πkn

N
)) (1)

where N denotes the number of samples (2048), k repre-
sents the index value for the frequency domain (20 to 256),
and n indicates the index value for the time domain (0 to
2047). Xk denotes the magnitude of the frequency bin at k,
and xn represents the time-domain sample data at n.

Because of the 3.9Hz bin width, and the frequency range
of a standard tuned guitar ( 80Hz–1000Hz), in this case the
bins that actually needed calculation numbered 236. Our for-
statement for calculating the DFT begins at index 20 (78Hz)
and ends at index 256 (998.4Hz).

b) Pitch Class Profile Algorithm: Pitch Class Profiles
quantify the intensity of each pitch class with twelve numbers
and can be used for chord recognition. In order to calculate a
PCP, each bin of the DFT must be mapped to a pitch class.
This mapping is done by the equation for M(l), which is
shown as

M(l) =


−1, for l = 0

round

[
12 log2(

Fs×l
N /Fref )

]
mod12 for l = 1, 2,

......, N/2− 1
(2)

where Fs is the sampling frequency, l is the bin index, N
is the DFT length, and Fref is the reference frequency.
M(l) uses the cent value of a DFT bin and modulus math

to return an integer valued zero through eleven. This integer
corresponds to the pitch class of a DFT bin; zero represents
pitch class C, one represents pitch class C# and so on. The
term Fs×l

N is the frequency in Hz that a bin represents. M(l)
calculates the cent value of a particular frequency bin, with
respect to a constant reference frequency, 65.4 Hz in our case.
Each pitch class is 100 cent apart so dividing by modulus
twelve returns an integer valued 0-11.

The PCP effectively sums the square of the intensity of all
bins that fall under a particular pitch class as is shown in
equation 3.

PCP (p) =
∑

l.s.t.M(l)=p

‖X(l)‖2 (3)

Thus, the PCP results in twelve values representing the
intensity of each pitch class. Once a PCP is calculated for
an input signal, matching algorithms must be implemented to
find the most likely chord played.

In order to do this, Chord Type Templates (CTTs) which
are binary vectors with twelve values are used. These twelve
values corresponding to the twelve pitch classes much like
the PCP. Different methods like Weighted Sum and Nearest
Neighbor can be performed to compute scores for each CTT.
These scores are maximized or minimized respectively to
return the most likely chord played.

c) Exponential Smoothing: Exponential smoothing,
shown in equation 4 is implemented to reduce noise and
provide a more consistent output. The exponential smoothing
value is α, the smoothed output is the discrete function y(n),
and the un-smoothed input is the discrete function x(n).

y(n) = αx(n) + (1− α)y(n− 1) (4)

The instant after a chord is struck, the frequency spectrum
of the signal looks rather unfamiliar before becoming the
recognizable chord. Exponential smoothing minimizes this
effect by weighing the current PCP with previous PCPs. To
implement this, we use a variable to store the previous PCP
and loop through each PCP value and set it equal to a new
smoothed value. After a little bit of tuning, our final system
uses an exponential smoothing factor of 0.5.

d) Data Structures: The CTTs are stored in a two-
dimensional array. Our system detects all major and minor
chords; thus our array size is 24 × 12 corresponding to the
number of chords in our data structure and twelve PCP values
for each chord respectively.

The CCT data structure starts with the Cmaj chord and
increments by semi-tone until reaching the last element of
Bmin. Order is important as a parallel data structure is needed
to map each CTT to a string that represents the chord name.
An array of structs is used to hold the string values. Both data
structures follow the same order in that the index 0 corresponds
to a Cmaj, index 1 to C#maj, and so on until Bmin.



e) Weighted Sum: Our algorithm implements Weighted
Sum method to match each calculated PCP to the most similar
CTT, shown in equation 5.

Scorec =

11∑
p=0

Wc(p)× PCP (p) (5)

Essentially, each PCP value is multiplied by the correspond-
ing CTT value and then all values summed. This score is
calculated for every CTT and then maximized to return the
most likely chord played.

Nested for-loops are used to access every chord and then all
twelve values of the given CTT. As each score is calculated,
our program updates the maximum scores as well as the index
of the CTT. When the nested for loops are finished iterating,
a simple print statement is used to access the chord name and
send it to the UART interface.

f) Silence Detection: Silence detection is needed to pre-
vent the detection of chords when nothing is being played.
The system must recognize when nothing is being played
as early as possible to prevent unnecessary running of chord
recognition code.

Our program uses the average of all DFT values of each
frame for a quantified volume of the input. This average is
compared to a threshold; if the threshold is not met, a chord
is still detected. However, if the threshold is not met three
times in a row, our program skips all chord recognition code
and returns “nothing detected”.

V. EXPERIMENTAL RESULTS

In this section, the system performance in terms of accuracy
and computation speed of the chord recognition is evaluated.
In what follows, the hardware cost on the Zync FPGA is
further estimated.

A. Accuracy and Computation Speed

Having implemented all the algorithms in the previous
sections, we created a bootable BIN file for the Zybo SoC to
boot into through the SD card. We did testing using a standard
tuned guitar, a PopVoice Lapelle Microphone, and TeraTerm
on a laptop computer to read the UART output. The platform is
shown in Fig. 8, and the experimental results are demonstrated
in Fig. 9.

Fig. 8. FPGA Demonstration

Fig. 9. Chord Recognition Results

TABLE I
FPGA RESOURCE COST

Resource Utilization Available Utilization %
LUT 547 17600 3.11
RAM 60 6000 1.00

FF 791 35200 2.25
IO 9 100 9.00

BUFG 2 32 6.25

On average, when testing while playing open chords, we
manage to get close to 90% accuracy for the chord detection.
While playing barre chords, the accuracy drops close to 65%.

The delay between chord outputs averages near 0.6 seconds.
Considering the sampling frequency and number of samples,
it can be observed that close to 0.25 seconds are used in the
sampling process, and the remaining 0.35 seconds are used
for the rest of our algorithms. In all, the speed and accuracy
of our system exceed the system requirements we had set for
ourselves to consider the system real − time, which is 350
ms time constrain for sampling one chord [16].

B. FPGA Cost

The hardware cost on FPGA is summarized in Table I,
including 547 slices of look-up-table (LUT) and 791 slices
of flip-flops (FFs). The IOs consumption is 9% of the total
IOs on Zybo FPGA.

Using Xilinx Power Analyzer, the power consumption is
estimated in Fig. 10. The static power dissipation is 120 mW,
which is 8% of the total power. Using the ARM PS7, the
dynamic power cost can reach 1.405 W, which is 94% of
the total power due to the frequent register configurations for
performing the algorithms with software. Hence, there is a
great potential to reduce power consumption by implementing
all the algorithms by FPGA as the future work.



Fig. 10. Power Consumption

VI. CONCLUSION

This paper presents a scalable audio processing platform on
FPGA, containing an open design on Zync7000 FPGA and
performance evaluation in terms of accuracy, latency, slice
cost, and power consumption. More important, we proved
the validity of our proposed platform with an application of
automating music transcription, capable of finding specific
notes played by users through extracting and analyzing the
frequencies from a live recording. This platform is reusable
and expandable to a diverse range of applications in audio
processing and speech recognition with FPGA. We hope that
the public release of the platform will lead to multiple designs
in the future, and serve as a framework to projects of research
and education.

VII. FUTURE WORK

The future work of this open platform focuses on a real-
time music transposer with designs on FPGA. There were
many powerful computer programs that allow for musicians
and hobbyists to write out sheet music, such as TuxGuitar,
GuitarPro, and others. They allow for the user to compose
music using both the traditional staff, as well as through tab-
lature. Though powerful, these programs still require the user
to manually input the music. This process can take a very long
time, especially when the musician is composing an original
piece. For example, Lunaverus has developed a software called
AnthemScore which takes in audio files like mp3, WAV, etc.,
and uses computer vision and convolutional neural networks
to extract the notes from visualized spectrogram [17].

All these approaches to automating music transcription have
an overhead of three to five minutes, compared to our intended
range of millionths of seconds. The ideal end goal of our
work is a pure hardware implementation on an ASIC, which
is able to be integrated as an IP for system-on-chips (SoCs)
for devices like Amazon Echo and Google Home.
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