
Real-Time Automatic Music Transcription (AMT)
with Zync FPGA

1st Vaca Kevin
Engineering Department

University of Houston Clear Lake
Houston, USA

2nd Archit Gajjar
Engineering Department

University of Houston Clear Lake
Houston, USA

3th Xiaokun Yang*
Engineering Department

University of Houston Clear Lake
Houston, USA

yangxia@uhcl.edu

Abstract—A real-time automatic music transcription (AMT)
system has a great potential for applications and interactions
between people and music, such as the popular devices Amazon
Echo and Google Home. This paper thus presents a design on
chord recognition with the Zync7000 Field-Programmable Gate
Array (FPGA), capable of sampling analog frequency signals
through a microphone and, in real time, showing sheet music
on a smart phone app that corresponds to the user’s playing.
We demonstrate the design of audio sampling on programming
logic and the implementation of frequency transform and vector
building on programming system, which is an embedded ARM
core on the Zync FPGA. Experimental results show that the
logic design spends 574 slices of look-up-tables (LUTs) and 792
slices of flip-flops. Due to the dynamic power consumption on
programming system (1399 mW) being significantly higher than
the dynamic power dissipation on programming logic (7 mW),
the future work of this platform is to design intelligent property
(IP) for algorithms of frequency transform, pitch class profile
(PCP), and pattern matching with hardware description language
(HDL), making the entire system-on-chip (SoC) able to be taped
out as an application-specific design for consumer electronics.

Index Terms—automatic music transcription (AMT), field-
programmable gate array (FPGA), pitch class profile (PCP),
system-on-chip (SoC)

I. INTRODUCTION

A remarkable pace at which automatic music transcription
(AMT) is developing has put new demands on real-time audio
processing systems. During the last decade AMT has been
dominated by two algorithmic families: non-negative matrix
factorization and deep neural network, which are accurate
with note detection but very time- and energy-consuming
on hardware platforms. To accelerate the data analytics in
cloud centers, field-programmable gate arrays (FPGA) have
been widely used by providers such as Amazon Web Services
(AWS), Alibaba Cloud, and Microsoft [1]–[3].

With another trend of offloading data processing from cloud
to edge, the use of FPGA has also evolved to edge comput-
ing due to the merits of programmability and computational
parallelism [4], [5]. The Zync FPGA, a hardware-software co-
design platform which integrates the software programmability
of an ARM processor with the hardware programmability
of an FPGA, enables the integration of key analytics and
hardware acceleration with CPU, digital system design, and
analog signal functionality onto a single device. Consisting of
ARM cores, the Zynq FPGA is one of the best solutions to

fully scalable, system-on-chip (SoC) platforms for the real-
time application requirements.

Under this context, this paper proposes an application on
music chord recognition with Zync7000 FPGA, enabling the
input of raw analog frequency signal through a microphone,
and, in real time, outputting sheet music on a smartphone
app. Generally, chord recognition is a process of identifying
specific harmonic sets of three or more musical notes. And a
musical note refers to the pitch class set of C, C#, D, D#,
E, F , F#, G, G#, A, A#, and B. The entire system contains
three phases: detection, processing, and user interface, which
respectively sample, extract, and display the chords onto a
smartphone app. The main phases – detection and processing
– are computed on FPGA to handle the sampling, frequency
spectrum generation, pitch class profile (PCP) building, and
pattern matching. The user interface is being worked on using
a separate Android device. The ideal end goal of this project
is a demonstration on FPGA with hardware programming
language (HDL) programmed intellectual property (IP), which
is able to be taped out and integrated into SoCs for marketing
devices like Amazon Echo and Google Home. The main
contributions of this work are:

• We present a real-time music transcription system on
Zync7000 FPGA, which is able to extract the frequencies
from a live recording and then analyze the given frequen-
cies to find specific chords played by the user. The goal
of this system is to minimize the latency of recognizing
one chord within 350 millionths of a second, which is the
time constraint for processing music with a high tempo.

• We present the block-based design and the synthesis
results in terms of slice count and power consumption
on Zync7000 FPGA. Due to the significantly higher
power consumption on programming system (the embed-
ded ARM core) compared with the programming logic
(the FPGA), the next step of this platform is to design
the algorithms of frequency transform, PCP, and pattern
matching with HDL, making the entire system as an IP
for SoCs for consumer electronic devices.

The organization of this paper is as follows. Section II
briefly introduces the related works and III presents our work
with design architecture. Section IV discusses the implemen-
tation of the proposed system. In Section V, the experimental

results in terms of hardware cost, power consumption, and
FPGA prototype are shown. Finally, Section VI presents the
concluding remarks and future work in our target architecture.

II. RELATED WORK

Prior research on AMT mainly focused on the improvement
of accuracy of algorithms [10]. The dominant algorithmic
families for accuracy enhancement in the last decade are
non-negative matrix factorization [13], [14] and deep neural
network [12], [15], [16]. All this research highlights the
achievement of high accuracy rather than the computation
performance in terms of speed and energy efficiency on edge
devices.

Our work concentrates on presenting a real-time system able
to automate music transcription around 350 millionths of a
second per chord recognition. This intended rate was estab-
lished by taking into consideration that the tempo of a skilled
pianist’s performance is 120 beats per minute (bpm), and the
tempo of jazz music can reach 340 bpm [18], with chords
changing between one and two times a measure. Therefore, the
number of chords that need to be recognized per second can be
calculated as: 340 beats

1 minute×
1 minute
60 seconds×

1 measure
4 beats ×

2 chords
1 measure ≈

2.83 chords/second. In other words, the time constraint
for recognizing one chord should be less than or equal to
1/2.83 = 353 thousandths of a second.

All the existing computer programs for music transcrip-
tion, such as Chordify [21] and AnthemScore [22], have an
overhead of several minutes per song transcription, which
take in audio files like mp3, WAV, etc., and use computer
vision and convolutional neural networks to extract the notes
from a visualized spectrogram. Considering offloading such a
complex algorithm from cloud or PC to resource-limited edge
devices, it near impossible to produce a real-time system.

A case study of chord detection on stand-alone device with
Raspberry Pi has been proposed in [17]. The implementation
of this system has the device record for one second and analyze
the data for another one second, totaling 2 seconds compared
to our intended range of 0.353 seconds. To overcome this
challenge, we present a design with Zync7000 FPGA, enabling
automating music transcription in real time by playing out a
melody. Our final hope is to make the design available as an
application-specific integrated circuit (ASIC) IP.

III. PROPOSED WORK

Fig. 1 shows the flow chart of the system. The different
tasks are separated into four different parts which include:
sampling, transform, vector building, and pattern matching.
The audio sampling is processed by programming logic, or PL,
on Zync FPGA, and the Discrete Fourier Transform (DFT),
PCP building, and pattern matching are run on programming
system, or PS, on Zync FPGA. The final goal of this project
is to program the modules of DFT and PCP building on
programming logic as well. Additionally a Raspberry PI is
adopted to match the patterns and show the sheet music on an
smartphone app. This paper focus on the first four tasks based
on Zync FPGA.

Fig. 1. Flow Chart

A. Sampling

Sampling is the conversion of a continuous time signal into a
discrete time signal. The analog audio signal produced by mu-
sic is picked up by the microphone and converted into binary
data. The sampling process involves programming the Analog
Devices SSM2603 Audio Codec present on the Zybo [7], in
order to set the proper data path, data size, gain, and sampling
rate. Each of the mentioned settings are programmed onto the
chip’s registers by using an I2C interface. For the default
sampling rate of 48 KHz, the master clock should be driven
at 12.288 MHz by the SoC.

B. Frequency Transform – DFT

After obtaining the required samples, the following process
is the DFT. The DFT is used to convert the samples from the
time domain to the frequency domain. It is in the frequency
domain that we can differentiate between the different notes
present in the sample. The equation for calculating the DFT
is shown below

Xk =

N−1∑
n=0

xn × (cos(
2πkn

N
)–i× sin(2πkn

N
)) (1)

where N is the number of samples, k is the index value for
the frequency domain, and n is the index value for the time
domain. Xk denotes the magnitude of the frequency bin at k,
and xn represents the time-domain sample data at n.

The real and imaginary parts of Xk can be further broken
up into their own respective summation equations, as shown
in Eq. 2 and Eq. 3.

Xkreal
=

N−1∑
n=0

xn cos(
2πkn

N
) (2)

Xkimag
=

N−1∑
n=0

xn sin(
2πkn

N
) (3)

The final value of Xk is the absolute value of the real and
imaginary parts combined, as shown in Eq. 4. Upon building
the frequency spectrum of the collected samples, the next
process would be finding the PCP.

|Xk| =
√
(X2

kreal
) + (X2

kimag
) (4)

C. Vector Building – PCP

In music, there are twelve notes that are denoted by the
letters A through G, combined with accidentals that raise or
lower a note by a half-step. For instance, C and D are a full-
step apart, but C and C# (C sharp), or C# and D are only
a half-step apart. Typically beginning with C, if one were to
increment by half steps until reaching B, increasing it further
would loop back to C, only an octave higher. A C0 (0th octave
C) is twelve steps from a C1 (1st octave C). In terms of
frequency, C1 is equal to twice the frequency of C0, and C2
would be twice C1. When looking for the PCP, one must find
the summation of each of the twelve notes across all octaves
present in a frequency spectrum.

The two equations used in calculating the PCP are shown
in Eq. 5 and Eq. 6 [11]:

PCP (p) =

l∑
ls.t.M(l)=p

‖X(l)‖2 (5)

M(l) = round

[
12log2

(
fsl

Nfref

)
mod 12

]
. (6)

In Eq. 5, p corresponds to the note being built. A p of 0
would be a C, and a p of 1 would be a C#, etc. X(l) would
be the frequency magnitude at index l and M(l) would be the
pitch class at index l.

Eq. 6 is for calculating the pitch class for index l. In this
equation, fs/N corresponds to the bin width in Hz, or what
the change in frequency is between each bin/index l. The l
is the current bin or index being calculated, and fref is the
reference frequency for the base note of the vector.

Eq. 6 would be run for every bin l and every note p. When
M(l) is found to equal p, the magnitude of the frequency
X(l) would be added to the summation of the PCP at p.
For example, say low E (E2, 82.41 Hz) on the guitar was
plucked and recorded by the device. If the sampling rate
was 8 kHz and the number of samples was 2048, then
bin 21 (8, 000/2048 × 21 = 82.03) would correspond the
closest to E2. When calculating the PCP for note E (p =
4, fref = C0 = 16.35 Hz), the equation would read out:
M(21) = 12log2(

8000×21
2048×16.35)%12, which turns out to be

M(21) = 3.92 ≈ 4. Thus, M(21) = p = 4, so the
PCP summation for E (p = 4) would include the frequency
magnitude at bin 21.

After finding the PCP summations for each of the twelve
notes, a threshold is calculated and compared to each of the
notes. Then the PCP logic vector (true/false, 1/0) is created
based on the threshold which ultimately denotes which notes
are present throughout the frequency spectrum. The logic
vector will be further pattern matched in the final process as
well.

D. Pattern Matching

In music, a chord is made up of three or more notes in
varying octaves. For example, a G Major chord on the guitar
consists of G2, B2, D3, G3, B3, and G4. Without taking the

octaves into consideration, the notes present in the G Major
Chord Template would be G, B, and D. The PCP chord
template for the G Major chord would be [0 0 1 0 0 0 0
1 0 0 0 1]. The G Minor chord contains G, D, and A#,
which would correspond to [0 0 1 0 0 0 0 1 0 0 1 0]. Every
chord has its own pattern within the twelve note PCP vectors.

In the previous Section III-C, Eq. 5 and Eq. 6 are used to
build the PCP summation and consequently the PCP chord
template. In this section, the output from Eq. 5 and Eq. 6 is
simply matched up to the predefined chord templates and the
appropriate chord name is given out. In the cases where there
are not enough notes to match a chord (only one or two notes
are played), then whichever notes are present are output.

IV. IMPLEMENTATION

Fig. 2 depicts the hardware architecture for the implemen-
tation with Zync FPGA. The target device used in this work
is Xilinx Zybo Zynq-7010, and the audio in is with a guitar
playing as a test case.

The audio signal is introduced into the system by a micro-
phone connected to the “J6 Microphone In” connection on the
Zync SoC. The SSM2603 Audio Codec samples and sends
the data to the ARM Processor which stores the data in an
array. Both the DFT and PCP algorithms are implemented in C
language to process the sampled data. The PCP output is then
sent through the UART protocol to a separate system which
handles the pattern matching. The process, from sampling to
the PCP output on UART, is repeated until the user shuts off
the system.

Fig. 2. Hardware Architecture

A. Audio Codec (SSM2603) Configuration

Before discussing the specific configuration of Audio
Codec, the hardware-software co-design system is created in
Fig. 3, including the ARM core, or specified as Cortex-A9
Processor, and the block-based design of an audio controller.
The preliminary results shown in this paper are obtained by the
integration of design logic and Cortex-A9 Processor, and the
future work will focus on offloading the algorithms of DFT,
PCP, and the database onto programming logic.

For the audio controller, registers “ANA-
LOG AUDIO PATH” and “SAMPLING RATE” are
configured outside of their default settings [7]. Analog
Audio Path has been configured to only mix the -15dB
attenuated “Microphone In” input at the Analog to Digital

Fig. 3. The hardware-software co-design system.

Converter (ADC). The Digital Audio Interface (register
“DIGITAL AUDIO I F”) is set to default which has the data
output of the ADC set to 24 bits transferred over the I2S
protocol. The Sampling Rate (register “SAMPLING RATE”)
has been adjusted so that, with a master clock driven at the
default 12.288 MHz, the sampling rate for the system is 8
kHz.

B. DFT on Cortex-A9 Processor

The remainder of the implementation is done on the SoC’s
processor. After configuring the Audio Codec, the processor
collects samples from the Codec and stores them into memory.
The following step is to transform the data from the time
domain to the frequency domain. The theory is outlined in
Section III-B.

To decrease processing time, only the first N/8 samples are
processed to the frequency domain. Using a 8 kHz sampling
rate and a 2048 sample size, the final sample processed (256)
would correspond with the frequency near 1000 Hz. Outside
of resonant frequencies created when playing the guitar, the
range of a standard tuned guitar would not exceed 1000 Hz
(though the resonant frequencies do inform the pitch class).
The DFT equation has a big O of O(N2), but only processing
an eighth of the samples, the big O is effectively divided by
eight.

C. PCP on Cortex-A9 Processor

The PCP algorithm is also implemented on the processor as
detailed in Section III-C. The previous reduction in processed
sample size also reduces the big O for the PCP algorithm.
Originally O(N), the processing of only an eighth of the
samples reduces the computation time to O(N/8). Although a
constant factor is not usually considered when discussing big
O as N approaches infinity, with a relatively small and finite
N , the difference in processing time is noticeable.

Alg. 1 depicts the pseudocode of PCP implementation.
Line 2 − 7 is used to find the frequencies which contribute
to the PCP element (Line 3) and then sum the corresponding
DFT output to the PCP output (Line 5). In order to calculate
the threshold, the PCP output is added to an average variable
in Line 8. The final average PCP output should be the
average/12 shown in Line 10.
Line 11− 17 shows the collection of the PCP vector. The

threshold calculation for the PCP output has been an area of
experimentation. The current implementation has the threshold
set to the average value of the PCP summations, as depicted
in Line 12. The PCP vector over the threshold is specified
as 1, otherwise being specified as 0. In such a way the PCP
vector with 12 digits are created.

This approach tackles two issues concerning the process
of extracting the PCP from the frequency domain. The first
issue concerns the placement of the threshold. The two options
consist of an absolute threshold and a relative threshold. With
an absolute threshold, one runs the risk of detecting majority
1s when multiple notes overlap each other when playing. If
the music is played in a way that allows for previous notes
to be held over to new notes, the PCP algorithm will detect
those old frequencies and you will be left with false positives.

Choosing to make the threshold relative to all the notes by
using the average solves the issue of loud volume, but a second
issue arises. In situations where the guitar is not being played,
the frequency spectrum will not be completely empty, and the
PCP algorithm will still create summations of different notes.
It can introduce a lot of false positives in moments of low
volume. Thus, the current solution is to scale the average up
by a certain amount so the threshold will only pass notes that
are present well above the average.

This paper focuses on establishing the platform with Zync
FPGA and the future work will concentrate on improving the
accuracy of the system and design the PCP IP with HDL.

Algorithm 1 Pseudocode of the PCP algorithm.
Require: dft[f]: the output results of DFT in index f; N: the

DFT Size; q: 12 PCP elements, cf: current frequency
1: for q = 0; q < 12; q ++ do
2: for f = 0; f < N/8; f ++ do

3: cf = round

[
12log2

(
fsl

Nfref

)
mod 12

]
;

4: if cf = q then
5: pcp[q]+ = dft[f];
6: end if
7: end for
8: avg+ = pcp[q];
9: end for

10: avg = avg/12;
11: for q = 0; q < 12; q ++ do
12: if pcpout[q] > avg then
13: pcpout[q] = 1;
14: else
15: pcpout[q] = 0;
16: end if
17: end for

V. EXPERIMENTAL RESULTS

In this section, the results of the transform output on FPGA
are compared with the golden models on MATLAB. In what
follows, the FPGA resource cost in terms of slice count and
power consumption is evaluated [8], [9].

A. Accuracy comparison

Before discussing the system performance, Fig. 4 shows the
platform for testing the audio-in channel, including a standard
tuned guitar and a system with a microphone connected to the
“J6 Microphone In” of a Zync SoC.

Fig. 4. Testing platform with guitar and FPGA

After establishing the platform, the transform output of
the Zync programming system has been compared to the
MATLAB output based on the same samples collected by the
Zync programming logic. While testing the accuracy of our
DFT results in the system, we output both the sample data
collected by the Audio Codec and the results of DFT, through
UART, back to the host computer. The sample data set was
then processed through the MATLAB DFT function, which is
seen as the golden models for testing the accuracy. Finally, the
golden result shown in Fig. 5(a) and the FPGA result shown
in Fig. 5(b) are compared.

(a) Logarithmic Scale of MATLAB

(b) Logarithmic Scale of FPGA DFT

Fig. 5. Fourier Transform Comparison

In order to clearly see the difference, we analyze both results
overlaid on each other in Fig. 6. The first three results (0 Hz,
23.44 Hz, and 46.88 Hz) are discarded due to both the nature
of low frequency waveform and the fact that a guitar’s lowest
note begins at 82 Hz. As shown in Fig. 6, both results begin to
match up at the fourth result, and continue to match up very
closely until the end of the Zybo results.

Fig. 6. Results Comparison between MATLAB and FPGA

In what follows, Fig. 7 shows the percent error cal-
culation by using the standard percent error formula
MATLAB Result−FPGA Result

MATLAB Result × 100%). The X-axis is the
index number for our results up to 512 (our Zybo DFT was
only calculated up to N/2). As seen in the figure, our largest
error does not exceed 0.0004%.

The detection rate for the PCP algorithm is not as accurate.
The large variation in our results for the PCP algorithm
could be attributed to a number of issues including: resonant
frequencies present in the environment, sensitivities of the

Fig. 7. Percentage Error

microphone picking up unwanted noise, and user error in
playing the instrument. The introduction of a moving average
for the PCP vector results should provide some stability in
the vector building process. The accuracy improvement of the
PCP implementation is one of our future works.

B. Resource cost on FPGA

The resource cost on FPGA is shown in Table I. The
implementation of the system spends 547 slices of look-up-
tables (LUTs) and 792 slices of flip-flops. The number of slices
would significantly increase when integrating the IPs of DFT
and PCP into the programming logic in the future.

TABLE I
FPGA RESOURCE COST

Resource Utilization Available
LUT 547 17600

LUTRAM 60 6000
FF 792 35200
IO 9 100

BUFG 2 32

The power consumption on Zync FPGA is shown in Ta-
ble II, including 120 mW static power (SP) shown in the
second column and the dynamic power (DP) shown as a
sum between the third column to the seventh column. Notice
that the dynamic power consumption on programming system
(shown in the seventh column) is significantly higher than the
dynamic power dissipation on the programming logic (shown
as a sum between the third column to the sixth column). Thus,
to design the IP of DFT and PCP with HDL has a great
potential to improve the power efficiency of the entire system.

TABLE II
POWER CONSUMPTION ON FPGA

TPa (mW) SPb (mW) DPc (mW)
Clocks Signals Logic I/O PS7

1526 120 2 1 1 3 1399

aTotal power consumption.
bStatic power consumption.
cDynamic power consumption.

VI. CONCLUSION AND FUTURE WORK

This paper presents a real-time AMT system with Zync
FPGAs, enabling one to find specific chords played by users
through extracting and analyzing the frequencies from a live
recording. Additionally, the hardware performance in terms
of slice cost and power consumption has been evaluated.
Considering the much higher power cost on programming
system compared with the programming logic, our future work
will focus on the IP design of frequency transform, PCP, and
pattern matching algorithms with HDL. The ideal end goal of
this project is a pure hardware implementation on a low-cost
and low-power SoC architecture [19], [20], which is able to
be taped out as an ASIC for edge devices. We believe that
this platform is reusable and expandable to a diverse range of
applications in audio processing and speech recognition.

VII. ACKNOWLEDGMENT

This research comes from one of the Undergraduate Senior
Projects in Spring 2019 at University of Houston Clear Lake.
We thank Mr. Mitchell Jefferies, Mr. Rigo De Leon, and Mr.
Harold Mao for assistance with establishing the platform and
testing the validity of the real-time system with Guitar music
input and sheet music output on a smartphone app.

REFERENCES

[1] S. Che, J. Li, J. W. Sheaffer, et al., “Accelerating Compute-Intensive
Applications with GPUs and FPGAs,” 2008 Symposium on Application
Specific Processors, Anaheim, CA, pp. 101-107, 2008.

[2] A. M. Caulfield et al., “A cloud-scale acceleration architecture,” 2016
49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), Taipei, pp. 1-13, 2016.

[3] D. Firestone, A. Putnam, S. Mundkur, et al., “Azure Accelerated
Networking: SmartNICs in the Public Cloud,” Proceedings of the 15th
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 2018), pp. 51-64, 2018.

[4] W. Shi, et al. “Edge Computing: Vision and Challenges,” IEEE Internet
of Things, vol 3, no. 5, pp. 637–646, Oct. 2016.

[5] X. Yang, et al., “A Vision of Fog Systems with Integrating FPGAs and
BLE Mesh Network,” Journal of Communications (JC) , Vol. 14, No.
3, PP. 210-215, March 2019.

[6] “Zynq-7000 SoC Technical Reference Manual,” V1.12.2, Xilinx, July
2018.

[7] “Low Power Audio Codec – SSM2603 Data Sheet,” Analog Devices,
pp. 19-29, 2018.

[8] X. Yang , N. Wu, and J. Andrian, “A Novel Bus Transfer Mode:
Block Transfer and A Performance Evaluation Methodology,” Elsevier,
Integration, the VLSI Journal, Vol. 52, PP. 23-33, Jan. 2016.

[9] X. Yang and J. Andrian, “A Low-Cost and High-Performance Embedded
System Architecture and An Evaluation Methodology,” IEEE Computer
Society Annual Symposium on VLSI (ISVLSI 2014), PP. 240-243,
Tampa, FL, USA, Sept. 2014.

[10] E. Benetos, S. Dixon, Z. Duan, and S. Ewert, “Automatic Music
Transcription,” IEEE Signal Processing Magazine, pp.21-30, 2019.

[11] T. Fujishima, “Real time chord recognition of musical sound: a system
using common lisp music,” in Proceedings of the International Computer
Music Conference (ICMC1999), pp. 464–467, 1999.

[12] S. Sigtia, E. Benetos and S. Dixon, “An End-to-End Neural Network for
Polyphonic Piano Music Transcription,” in IEEE/ACM Transactions on
Audio, Speech, and Language Processing, vol. 24, no. 5, pp. 927-939,
May 2016.

[13] E. Benetos and S. Dixon, “Multiple-instrument polyphonic music
transcription using a temporally-constrained shift-invariant model,” J.
Acoust. Soc. Amer., vol.133, no. 3, pp. 1727–1741, 2013.

[14] B. Fuentes, R. Badeau, and G. Richard, “Harmonic adaptive latent
component analysis of audio and application to music transcription,”
IEEE Trans. Audio, Speech, Language Process. (2006–2013), vol. 21,
no. 9, pp. 1854–1866, 2013.

[15] R. Kelz, M. Dorfer, F. Korzeniowski, S. Bock, A. Arzt, and G. Widmer,
“On the potential of simple framewise approaches to piano transcrip-
tion,” in Proc. Intl. Society Music Information Retrieval Conf., 2016,
pp. 475–481.

[16] H. He, et al., “Dual Long Short-Term Memory Networks for Sub-
Character Representation Learning,” The 15th Intl. Conference on In-
formation Technology (ITNG-2018), 2018.

[17] T. Palace, “Stand-Alone Device for Chord Detection,” Capstone Design
Project, Muse Union, 2015.

[18] G. Husain, W. Thompson, and E. Schellenberg, “Effects of Musical
Tempo and Mode on Arousal, Mood, and Spatial Abilities,” An Inter-
disciplinary Journal, vol. 20, no. 2, pp. 151-171, 2002.

[19] X. Yang and J. Andrian, “A High Performance On-Chip Bus (MSBUS)
Design and Verification,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., Vol. 23, Issue: 7, PP. 1350-1354, Sept. 2015.

[20] X. Yang and J. Andrian, “An Advanced Bus Architecture for
AES-Encrypted High-Performance Embedded Systems,” Patent,
US20170302438A1, Oct. 19, 2017.

[21] “Chordify”, 2019. [Online]. Available: https://chordify.net/.
[22] Lunaverus, “Automatic Music Transcription Software,” 2019. [Online].

Available: https://www.lunaverus.com/

