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Abstract This paper proposes field-programmable gate array (FPGA) accel-
eration on a scalable multi-layer perceptron (MLP) neural network (NN) for
classifying handwritten digits. First, an investigation to the network architec-
tures is conducted to find the optimal FPGA design corresponding to different
classification rates. As a case study, then a specific single-hidden-layer MLP
network is implemented with an eight-stage pipelined structure on Xilinx Ul-
trascale FPGA. It mainly contains a timing controller designed by Verilog
Hardware Description Language (HDL) and sigmoid neurons integrated by
Xilinx IPs. Finally, experimental results show a greater than ×10 speedup
compared with prior implementations. The proposed FPGA architecture is
expandable to other specifications on different accuracy (up to 95.82%) and
hardware cost.
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1 Introduction

Neural networks (NNs) have become an indispensable technique for a wide
range of applications such as image classification, natural language processing,
speech recognition, and many more [1–4]. Specifically in the era of edge com-
puting, to limit the complexity of NN in the power-constrained and latency-
critical scenarios is a big challenge. Many researches thus focused on mapping
NN models onto field-programmable gate array (FPGA) with the benefits of
high parallelism and energy efficiency [5,6].

The implementation of NN on FPGA is much harder than that on CPUs
and GPUs. The development framework like Caffe and Tensorflow for CPU
and GPU is absent for FPGA [7,8]. Most of existing FPGA designs of NN are
based on software-hardware co-design platforms such as Xilinx Zynq FPGA
and Intel HARPv2, where a CPU host and an FPGA in the same chip or pack-
age are integrated [9–11]. For example, the Zynq SoC family contains software
programmability of an ARM-based processor with the hardware programma-
bility of an FPGA [34,35]. The flexibility to use the programming system (PS)
can significantly reduce the design work on Hardware Description Language
(HDL); nonetheless, the utilization of the ARM core is very costly in terms of
FPGA slice count and delay.

Another research direction to the FPGA accelerator on NNs is based on
the High-Level Synthesis (HLS) tools like Xilinx Vivado [12–14]. HLS allows
users to build a network by using high level language like C or C++, and then
convert the design into register-transfer level (RTL). However, the high-level
description has limitation to optimize real-life design metrics to meet timing
and power requirement, making the design performance lower than the specific
hardware implementation [15].

Therefore, in this paper a multi-layer perceptron (MLP) neural network,
including RTL design to the controller and an integration with multiple Vi-
vado IPs, is presented to perform a practical application of handwritten digits
recognition. The database of Modified National Institute of Standards and
Technology (MNIST), which was developed by Yann LeCun, Corinna Cortes
and Christopher Burges, is used to build the MLP network and evaluate the
accuracy of the NN models [32]. Specifically, the contributions are below.

– This paper first conducts an investigation to several design architectures
of the MLP neural network related to different quality results. To show
a case study, a single-hidden-layer MLP network is implemented with an
eight-stage pipelined structure on Xilinx Ultrascale FPGA. Though a spe-
cific design is demonstrated in this paper, the proposed design structure
is expandable and scalable to different accuracy constraints and hardware
specifications.
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– Experimental results show that our proposed work can achieve a latency
of 1.55 microseconds per digit recognition with an accuracy of 93.25%. To
the best of our knowledge, this is the minimum inference latency compared
to those of existing works. Additionally, the FPGA slice count and energy
consumption are evaluated as well.

The remainder of this paper is organized as follows: Section 2 introduces
the related works to the application of handwritten digit recognition with
FPGA, and Section 3 presents the background of MLP network. In Section 4,
the design architecture of the MLP is discussed. The implementation of the
NN is further described in Section 5. In Section 6, the FPGA design per-
formance is evaluated in terms of latency, slice count, energy consumption.
Finally, Section 7 concludes this paper.

2 Related Works

The practical application of handwritten digits recognition has been performed
by numerous researches to overcome challenges such as reducing the computa-
tional complexity [16–18] and increasing the calcification correctness [19–21].
However, this paper focuses on finding the minimum latency corresponding to
different quality bounds of classifying images.

The computational speed of handwritten numeral digit recognition has
been greatly improved by using hardware accelerator in the past few years.
For example, two HLS FPGA designs on LeNet-5 CNN were presented in [22]
and [23], achieving a latency of 3.58 ms and 3.2 ms with accuracy of 98.64%
and 96%, respectively. The implementations on LeNet-5 CNN contained three
convolutional layers, two average pooling layers, and two fully connected layers,
in addition to the input and output layer.

Logic design on FPGA can further reduce the latency of NNs with the
benefit of computational parallelism. As an example, a deep neural network
(DNN) was implemented on Xilinx Zync-7020 FPGA in [24]. By optimizing the
scheduling of input memory and weight memory, the proposed work can reach
a latency of 640 us with 100 MHz clock. Additionally, in [28] a CNN network
was built end-to-end using a reconfigurable IP core and then implemented on
an lntel Cyclone10 FPGA. Experimental result showed that the design spent
17.6 us to recognize a handwritten digital picture with an accuracy rate of
97.57%.

To reduce the design complexity on NNs, authors of [29] presented a Super-
Skinny CNN (SS-CNN) with 39,541 parameters and only three layers in addi-
tion to input and output layer. The implementation on a Cyclone IVE FPGA
achieved a latency of 2.2 seconds including both training (55,000 images) and
inference (10,000 images). Another two-layer MLP network, containing only
one input layer and one output layer, was presented by the same authors [30].
Using a 25 MHz clock frequency, the design took 3.8 seconds to train 55,000
images and recognize 10,000 handwritten digits.
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In this paper, a scalable MLP network architecture is proposed, aiming to
significantly reduce the latency by slightly decreasing the classification rate.
The MNIST data base is used to evaluate different design structures corre-
sponding to different quality constrains. Though a case study on a single-
hidden-layer design is finally implemented on FPGA, the proposed network
architecture is expandable to meet different specifications on latency, accu-
racy, and hardware cost.

3 Fundamental Theorem of MLP Neural Network

This section discusses the fundamental knowledge of MLP networks, including
the sigmoid neurons and the data set used for training the network. Finally,
the way for finding the optimal design structure is depicted.

3.1 Sigmoid Neurons

Due to the benefit that a sigmoid neuron is much smoother than the step
functional output from perception, a sigmoid neural network is performed in
our work [33]. Generally the output for the sigmoid neuron can be written as

sigmoid neuron output =
1

1 + exp(−
n∑

i=1

wi × xi − b)
(1)

where wi denotes the weight corresponding to the input xi, and b represents
the bias. The parameter n demotes the number of input neurons. By making
small changes to the weights and biases of the sigmoid neuron, small changes to
the output would occur, eventually converging on a ‘correct’ or most effective
set of weights and biases.

From the hardware perspective, the design on each sigmoid neuron needs
the hardware designs on multiplication, addition, subtraction, accumulation,
exponential, and reciprocal.

3.2 Finding the Design Structure of the MLP Network

In this paper, The MNIST handwritten digit data set is used to train the MLP
network [32]. This data set has 60,000 handwritten digits with corresponding
labels that can be used to train the network. There is then a separate set of
10,000 different handwritten digits with labels that can be used to estimate
the network. Once the method for finding the accuracy of the network with a
trained set of weights and biases have been established, the goal is to decide
on a network design.

First, the input layer would require 784 neurons due to the fact that the
MNIST digit images to train the network are 28 × 28 input pixels in size.



Title Suppressed Due to Excessive Length 5

The second thing that would need to remain static, is the fact there would
be 10 output neurons because there are 10 possible outputs (0-9) that would
converge to a value of around 1. This leaves the number of hidden layers, as
well as the number of neurons in each hidden layer as the values that can be
adjusted.

Once a network design (number of hidden layers and number of nodes in
each layer) has been decided, the values of epochs used, mini batch size, and
learning rate can be tweaked in order to find the most accurate set of weights
and biases. These values are static with values of epoch = 30, mini batch size
= 10, and learning rate = 3.0, when comparing different network designs.

4 Proposed Design Architecture

This section discusses the design methodology of choosing a network. First,
we start an investigation to several single-hidden-layer and two-hidden-layer
networks corresponding to different quality specifications. In what follows, one
of the network structures is chosen as a case study to the design on FPGA
acceleration.

4.1 Comparing Different Networks

As stated above, various network designs are considered to find a network
that would be able to be implemented with relative simplicity but still attain
a high accuracy. When testing different networks, the epoch, mini batch size,
and learning rate all remain the same, but the number of hidden layers and
neurons in each layer are changed. First the one-hidden layer networks are
tested: [784, 50, 10], [784, 30, 10], [784, 20, 10], [784, 16, 10], [784, 12, 10],
[784, 10, 10], [784, 8, 10], [784, 5, 10], [784, 4, 10], [784, 3, 10], [784, 2, 10],
[784, 1, 10], where the first number is the input layer number, the second
number is the number of neurons in the hidden layer, and the third number is
the output layer neurons.

When using two-hidden layers, the following networks are tested: [784, 50,
50, 10], [784, 30, 30, 10], [784, 20, 20, 10], [784, 16, 16, 10], [784, 12, 12, 10],
[784, 10, 10, 10], [784, 8, 8, 10], [784, 5, 5, 10], [784, 4, 4, 10], [784, 3, 3, 10],
[784, 2, 2, 10], [784, 1, 1, 10], where the second and third numbers denote the
value of neurons used in the first and second hidden layers.

The accuracy of the one-hidden layer (blue dots) and two-hidden layer
(orange dots) networks is summarized in Fig. 1(a). It can be observed that as
the number of neurons in the hidden layer(s) increases, the accuracy increases
exponentially and asymptotically approaches a value of 1.0. In Fig. 1(b) and
Fig. 1(c), it shows that for networks that have 10 neurons or greater in the
hidden-layer(s), the difference in accuracy is especially small. This is taken
into consideration when deciding the final network design.



6 Isaac Westby et al.

Fig. 1 Comparing accuracy of MLP networks with a single hidden layer and two hidden layers.

4.2 Adjusting Epoch, mini batch size, and Learning Rate

In what follows, three parameters – epoch, mini batch size, and learning rate
are adjusted when training the network. These values are important to how
quickly the network’s weights and biases can be trained to the highest attain-
able digit recognition accuracy.

The mini batch is used to set the number size of the batches that are used
to train the weights and biases. When setting learning rate = 3.0, the result in
Fig. 2(a) from changing the mini batch shows that the highest digit recognition
accuracy is achieved by the networks of mini batch=30 after 10 epochs.

When setting mini batch = 30, the accuracy result from changing learning
rate is shown in Fig. 2(b). It can be observed that the highest digit recognition
accuracy occurs when learning rate is 3.0. For these results there is virtually no
discernible difference in the performance of training for learning rates between
2.0 – 10.

The final test is conducted in Fig. 2(c) using four different combinations
across 60 epochs. The combinations used here are, mini batch = 10 & learning
rate = 3.0, mini batch = 10 & learning rate = 0.1, mini batch = 30 & learning
rate = 3.0, and finally mini batch = 30 & learning rate = 3.0. By testing these
varying parameters, it is able to figure out which combination will lead to the
most accurate set of weights and biases in the shortest amount of time. Since
the biases and weights are only going to be generated one time, then used
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Fig. 2 A graph comparing the digit recognition accuracy with (a) the mini-batch size, (b)
learning rate, and (c) the combination

in the network after that point, this study trains the network for many more
epoch, so that the accuracy can be as high as possible.

4.3 Final Network Design

In conclusion, networks with two hidden layers perform better than networks
with single hidden layer, but this increase is very limited. Second, at least 10
neurons in the hidden layer are needed to reach a classification rate over 90%.
Therefore, a single-hidden-layer MLP network is chosen as a case study, and
further 12 sigmoid neurons in the hidden layer is instantiated. Notice that the
design structure is expandable to achieve higher accuracy with more hardware
cost, or reversely, to trade the design accuracy for less hardware consumption.

Fig. 3 shows the network structure, containing 784 input neurons, 12 hidden
neurons, and 10 output neurons. It results in 784 × 12 = 9408 weights and 12
biases in the hidden layer, and 12 × 10 = 120 weights and 10 biases in the
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Fig. 3 A figure showing the final network design: 784 input pixels to the input layer, 784 × 12
weights and 12 biases to the hidden layer, and 12×10 weights and 10 biases to the output layer.

output layer. Totally there would be thus 9,550 parameters stored into FPGA
buffers.

Once a network has been chosen, the weights and biases are generated by
running the python program [33]. For this task, the techniques with Epoch
= 60, mini batch size = 30, and Learning Rate = 3.0 are used. There is a
random nature to these numbers, so the system is run multiple times until a
set of weights and biases are obtained which achieves the highest accuracy of
93.25%.

5 Implementation

In this section, the ML algorithm is broken down by hardware operations.
Further, different architectural designs to the algorithm are analyzed and eval-
uated by hardware implementations.

5.1 Non-Pipelined Hardware Design Architecture

Generally the NN can be divided into the hidden layer neurons and the output
layer neurons. First the equation for the output of the hidden layer neuron j
can be rewritten:
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hidden neuron output(j) =
1

1 + exp(−
784∑
i=1

wi,j × xi − bj)

(2)

where i specifies the number of input pixels (ranges from 1 to 784) and j
denotes the number of the hidden neurons (ranges from 1 to 12). This allows
us to break the problem of finding the output of a hidden layer neuron down
into two parts. The first part is to multiply all 784 input pixels (xi) by their
corresponding weights (wi,j), then sum those values into one result which can

be formulated as
784∑
i=1

wi,j ×xi. A visual representation of this process is shown

in Fig. 4(a). Assuming that each hardware operation has a latency of one clock
cycle, in the first clock cycle 784 multipliers are needed to multiply the input
pixels by their correct weights, and then 10 cycles of cascading adders to sum
the results up into one final value.

The second part is to take that summed value, denoted as Sj =
784∑
i=1

wi,j ×

xi), and plug it into the sigmoid function formulated as 1
1+exp(−Sj−bj)

. This

involves five different operations: 1) taking the negative value of the summed
result, 2) subtracting bias, 3) taking exponential to that value, 4) adding a
value of 1, and finally 5) taking the reciprocal. As shown in Fig. 4(b), this
stage takes another 5 clock cycles by assuming a latency of one cycle for every
operation. Putting the two stages together, it spends a total of 16 clock cycles
in order to find the output of a hidden layer neuron.
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Fig. 5 A visual representation of the operations of a single output layer neuron.

Then the output layer neurons are considered. Specifically the hardware
involves taking the outputs of the hidden-layer neurons, then plugging those
values into the output layers below:

final neuron output(k) =
1

1 + exp(−
12∑
j=1

wj,k × hidden neuron outputj − bk)

(3)

where k ranges from 1 to 10 as the number of output neurons. This output
layer is implemented in a similar manner as the hidden layer. A visual repre-
sentation is shown in Fig. 5. In this stage, it takes only 4 cycles of adders to
sum the multiplication results, allowing the entire process of calculating the
result of the final layer neurons to take only 10 clock cycles.

In summary, the design described above contains the operations needed
for one neuron in the hidden layer, and one neuron in the output layer. The
hardware design on a non-pipelined network thus can be implemented for every
neuron in the hidden layer, as well as every neuron in the output layer by
repeating the operations 12 and 10 times respectively. Specifically, one neuron
in the hidden layer spends 784 floating-point multiplyers, and one neuron in
the output layer spends 12 floating-point multiplyers, hence the non-pipelined
architecture will use 784 × 12 + 12 × 10 = 9528 floating-point multiplyers.
Similarly, 9528 adders are needed including 9,408 adders in the hidden layer
and 120 adders in the output layer. Though the latency is only 26 cycles the
non-pipelined architecture is very costly on hardware and not affordable by
most advanced FPGA boards.
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Table 1 A comparison of the resources needed for a pipelined, non-pipelined design, and
pipelined with 98 multipliers designs.

Design
Structures

Latency
(Cycles)

Hardware Cost
MUL ADD SUB EXP REC

Non-pipelined 26 9528 9528 44 22 22
Fully Pipelined 48 796 796 4 2 2

8-statge Pipelined 129 110 110 4 2 2

5.2 Pipelined Hardware Design Architecture

To reduce the hardware cost, a fully pipelined design architecture is further
presented. Instead of duplicating the design neuron 12 times in the hidden
layer and 10 times in the output layer, the design on the single neuron can
be reused over clock cycles. The comparison between resource cost of the non-
pipelined design and pipelined design is shown in Table 1. It can be observed
that even though the non-pipelined approach is nearly twice the speed of the
pipelined approach, it uses nearly 12 times the resources.

In order to further reduce the hardware cost, the multiplication of the first
layer weights and inputs within the hidden layer neuron can be continuously
broken down. For example, an eight-stage pipelined structure for the hidden
layer neurons is shown in Fig. 6(a). This design keeps the same pipelined
structure for the output level neurons, but for the hidden layer neurons, instead
of 784 multipliers followed by adders it will only need 98. Hence, it is able to
process 98 inputs with each iteration. So eight iterations will be executed in
order to process all the inputs for a neuron. As the results from each eighth of
the multiplications come through they are added together in an accumulator.
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Fig. 7 A visual representation of all the components of the design put together.

An idea of how the accumulator fits into the output of the hidden layer
neurons is shown in Fig. 6(b). Specifically, it can be seen that at cycle nine the
first value from the multiplier-adder comes in. For eight cycles these values are
accumulated to get one final value for all 784 inputs. Once this value has been
found, the result is just sent into the same sequence, of taking the negative,
subtracting bias, taking exponential, adding 1.0, then taking the reciprocal.
This entire process ends up taking 21 cycles to find the result.

A comparison of the resource utilization and latency between pipelined
and non-pipelined designs is shown in Table 1. It can be observed that the
eight-stage pipelined structure consumes more clock cycles but only spends
13.8% the number of hardware components as the fully-pipelined design, and
1.15% the number of hardware as the non-pipelined design.

The proposed design structure can be expanded to different pipelined levels
with different specifications to resource cost and computational speed. The
higher of the pipelined levels, the less hardware resource is needed but more
clock cycles will be taken.

5.3 Design and Simulation

In what follows, the case study of the eight-stage structure of the MLP network
is designed by Verilog HDL and integrated with multiple Vivado IPs. Basically
the design structure can be divided into two stages, as shown in Fig. 7. Stage
one is used for finding the output of the hidden layer neurons, and stage two
is used for finding the output of the output layer neurons.

In stage one, the 98 multipliers and cascading adders are executed eight
times, feeding the result each time into the accumulator. This allows the net-
work to process all 784 input pixels and their corresponding weights. Once the
accumulator has accumulated all eight summed values, the results propagate
sequentially through the rest of stage one. Once all 12 of the stage one out-
puts have been calculated, stage two processes the results of the output layer
neurons sequentially.

The design on the timing controller is verified by Mentor Graphic Mondel-
sim, and the final functionality of the digit recognition is tested by using Xilinx
Vivado. As an example shown in Fig. 8, the final results of the network can
be obtained by looking at the value of the signal ‘final neuron result value’,
when ‘cnt6’ spanning over hexadecimal ‘0xa – 0x13’. These results come in
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Fig. 8 Vivado waveform showing the final results of the network.

such that the value of ‘final neuron result value’ at ‘cnt6 = 0xa’ corresponds
to detection of a handwritten digit ‘0’, at ‘cnt6 = 0xb’ corresponds to a detec-
tion of a digit ‘1’, etc. Thus the final detection results of the network show that
the network has strongly detected a digit ‘7’, with that output being equal to
‘0.999975324’, and all other outputs being nearly ‘0’.

6 Experimental Results

In this section the performance evaluation is further discussed in terms of
speed, slice count, and energy cost. Xilinx Vivado is applied as the synthesis
tool with FPGA part xcku035-sfva784-1LV-I.

6.1 Execution Time on FPGA

For the FPGA execution, the latency of a single digit recognition is 1.55 us
running on a 100 MHz clock. An equivalent design on Matlab is performed in
order to compare the execution time between hardware and software. Generally
the software latency is taken on a personal computer that has the following
processor, Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz, 2904 Mhz, 2 Core(s),
4 Logical Processor(s).

As shown in Table 2, the execution time in software varies every time run-
ning it with the longest total execution time taken into consideration, and the
fastest taken into consideration. The execution time for the software imple-
mentation is based upon 10,000 input images, so the total execution time is
divided by 10,000 in order to find the execution time per image. The Speedup

is found by a simple formula SpeedupA = (ExecutionTime)B
(ExecutionTime)A

.

Specifically shown in the fourth column, the longest measured time per
image in software is 197.19 us, and the fastest is 62.61 us. This leads to a
speedup in hardware of 127.2× over the longest software run, and a speedup
of 40.4× over the fastest software run. When further taking the difference
of the clock frequency (100 MHz in hardware v.s. 2.7 GHz in software) into
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Table 2 A comparison of the execution times in software and hardware.

Comparison
Time for

10,000 Images (s)
Time per

Image (us)
Speedup

Software
(Matlab)

Fastest 0.6261488 62.61
n/a

Longest 1.9718928 197.19
Hardware
(FPGA)

n/a 1.55
40.4 over fastest
127.2 over longest

Table 3 A further breakdown of the utilization results.

Resource CLB LUTs CLB Registers
digitrec (top) 44,668 14,274
acc add 1,880 656
mul 98 30,100 11,255
mul 12 3,473 1,330
u0 neuron finish 1,575 311
u1 neuron finish 1,543 311
all blk mem (total) 6,097 411

Table 4 The energy consumption on FPGA

Dynamic Energy Static Energy Total
Signals Logic DSP I/O

0.01 0.88
Energy (mJ) 0.35 0.49 0.03 0.00
Percentage (%) 40 56 3 0 1 100

consideration, the implementation of a solution in hardware allows significant
speedup over a software implementation.

6.2 Resource Cost on FPGA

After synthesis, the hardware utilization is shown in Table 3. From the overall
summary in the second row, it shows that the design on the MLP network
mainly spends 44,668 LUTs and 14,274 FFs. In the further breakdown of the
utilization from the third to the eighth row, it can be observed that most of
the resource utilization comes from the multiplication modules, which includes
98 single-precision floating-point multipliers in the hidden layer (mul 98) and
additional 12 in the output layer (mul 12).

6.3 Energy Consumption on FPGA

In what follows, the energy dissipation is summarized in Table 4. The total
on-chip energy is 0.88 uJ, including 0.87 dynamic energy and 0.01 static en-
ergy. This gives a breakdown of 99% dynamic power and 1% static power
consumption. Further, in the second and third column it can be observed that
the high switching activities on signals and logic take most of the dynamic
energy (96%).
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Table 5 Comparison to related works.

Comparison
FPGA -
Clock (MHz)

Accuracy
(%)

Hardware Cost
Latency

LUTs FFs
[22] LeNet-5 CNN Xilinx ZCU102-100 98.64 32,589 33,585 3.58 ms
[23] LeNet-5 CNN Xilinx Zync 7Z020-100 90-96 18,426 8,264 3.2 ms
[24] DNN Xilinx Zync 7Z020-100 94.67 38,899 40,534 637 us
[28] CNN lntel Cyclone10-150 97.57 12,588 48,765 17.6 us
[29] SS-CNN lntel Cyclone IVE-30 98.8 98,000 220 us
[30] MLP NN lntel Cyclone IVE-25 89 34,000 380 us
Our Case Study Xilinx Ultrascale-100 93.25 44,668 14,274 1.55 us

6.4 Comparison to Related Works

Finally, the comparison to prior works is emphasized in Table 5. The accuracy
shown in the third column is based on the 10,000 test images from the MNIST
data set. Our case study to the eight-stage MLP network achieves an accu-
racy of 93.25%, between those of existing works. By using our proposed MLP
architectures, the classification rate can reach 95.82% with a two-hidden-layer
network and 50 neurons in each hidden layer.

Then the hardware cost is summarized in the fourth and fifth columns
in terms of LUTs and FFs. For all the implementations except for [23], the
slice count of LUTs and FFs are similar. The results of [23] in the fourth row
doesn’t include many hardware functions like sigmoid neurons thus the slice
number is less than those of others. The resource cost is highly dependent
on the pipelined levels with our proposed work. For example, the hardware
cost on multiplications and additions can be reduced by half with a 16-stage
pipelined design. In other words, the slice count can be reduced by half for
2× level of the pipelined design. It is a trade off between hardware cost and
recognition accuracy.

Focusing on FPGA acceleration, the latency to recognize handwritten dig-
its is mainly compared in the last column. It can be observed that our case
study achieves the highest speed by using a single-hidden-layer MLP network
and logic-only implementation. Specifically, the latency of [22] and [23] are
very high due to the limitation of timing and speed optimization using an
HLS design. Compared to the DNN and CNN designs in the fifth and sixth
rows, our proposed work achieves 411× and 11× speedup, respectively. Finally,
the execution time for our proposed work is greatly less than [30] and [29], be-
cause the weights and biases for our work are trained beforehand, while the
total execution time for [30,29] also includes training operations.

In summary, our proposed logic-only design on a single-hidden-layer net-
work is able to detect handwritten digits with a significant speedup, and main-
tain a 93.25% accuracy and similar utilization to exiting works.
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7 Conclusion

This paper proposes a scalable MLP network for the recognition of handwritten
digits. As a case study, a single-hidden-layer design structure is implemented
on FPGA, achieving 93% classification rate with just 12 hidden-layer neurons
and 9,550 weight and bias parameters. The logic-only design and off-board
training parameters enable to significantly decrease the complexity of the final
network implementation and provide a low latency when classifying images.
Experimental results show a > 10× acceleration over existing works.
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