
39

Improving AES Core Performance via An Advanced ASBUS Protocol

Xiaokun Yang, University of Houston Clear Lake
Wujie Wen, Florida International University
Ming Fan, Broadcom Corporation

Security is becoming a de-facto requirement of System-on-Chips (SoC), leading up to a significant share
of circuit design cost. In this paper, we propose an advanced SBUS protocol (ASBUS), in order to improve
the data feeding efficiency of the Advanced Encryption Standard (AES) encrypted circuits. As a case study,
the direct memory access (DMA) combined with AES engine and memory controller are implemented as our
design-under-test (DUT) using field-programmable gate arrays (FPGA). The results show that our presented
ASBUS structure outperforms the AXI-based design for cipher tests. As an example, the 32-bit ASBUS
design costs less in terms of hardware resources and achieves higher throughput (1.30×) than the 32-bit
AXI implementation, and the dynamic energy consumed by the ASBUS cipher test is reduced to 71.27%
compared with the AXI test.

CCS Concepts: rHardware→ Buses and high-speed links; Application specific integrated circuits;
Design modules and hierarchy; Arithmetic and datapath circuits; VLSI system specification and constraints;rSecurity and privacy→ Hardware-based security protocols;

Additional Key Words and Phrases: Advanced Encryption Standard (AES), Advanced eXensible Interface
(AXI), bus protocol, filed-programmable gate array (FPGA), System-on-Chips(SoC)

ACM Reference Format:
Gang Zhou, Yafeng Wu, Ting Yan, Tian He, Chengdu Huang, John A. Stankovic, and Tarek F. Abdelzaher,
2010. A multifrequency MAC specially designed for wireless sensor network applications. ACM Trans. Em-
bedd. Comput. Syst. 9, 4, Article 39 (March 2010), 23 pages.
DOI: 0000001.0000001

1. INTRODUCTION
The rapid rise in Internet-connected devices imposes increasingly higher require-
ments on high-performance and high-security System-on-Chips (SoC), in terms of
low-cost, low-power, and data security. It creates new problems and challenges be-
tween the complexity of security algorithms and the limited computing resources of
embedded chips. For decades, numerous hardware optimizations were proposed us-
ing application-specific integrated circuit (ASIC) [Good and Benaissa 2012] and field-
programmable gate arrays (FPGA) [Wang and Ha 2013; N. Mentens and Verbauwhede
2005] on the dominant symmetric-key cryptosystem – the Advanced Encryption Stan-
dard (AES) [aes 2001]. However, all the previous research frequently fall back on re-
fining the inside of the AES engines and suppose that data can be input to the engines
immediately; indeed, refining the inside of the AES cores is useful, yet the focus, such
as data feeding efficiency of the interface, is still on the entire bus architectures.

Basically, AES is a symmetric block cipher that processes on a 4× 4 matrix of bytes,
named as an AES state. Depending on the key length, each state should be processed

Author’s addresses: X. Yang, Department of Engineering, University of Houston Clear Lake; W. Wen, Elec-
trical and Computer Engineering Department, Florida International University; M. Fan, Broadcom Corpo-
ration
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© 2010 ACM. 1539-9087/2010/03-ART39 $15.00
DOI: 0000001.0000001

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:2 X. Yang et al.

10, 12, or 14 rounds. And each round, except for the final round, consists of four differ-
ent byte-oriented transformations: 1) non-linear byte substitution using a S-box (Sub-
Bytes/InvSubBytes), 2) shifting rows of the state array (ShiftRows/InvShiftRows), 3)
mixing the data within each column of the state array (MixColumns/InvMixColumns),
and 4) adding a round key to the state (AddRoundKey), while the final round does not
have the MixColumns/InvMixColumns transformation.

Focusing on the bus interconnection, we simplify SubBytes/InvSubBytes as a black
box with 8-bit input and 8-bit output. Likewise, the MixColumns/InvMixColumns
is a black box with 32-bit input and 32-bit output. The 32-bit input of Mix-
Columns/InvMixColumns black box is a combination of four shifted bytes from Sub-
Bytes/InvSubBytes black boxes. As an example for the encryption engine shown in Fig-
ure 1, the first MixColumns(0) processes on the first substituted byte of the first word
on bus (SubBytes(0)), the second substituted byte of the second word (SubBytes(5)), the
third substituted byte of the third word (SubBytes(a)), and the fourth substituted byte
of the fourth word (SubBytes(f)). Similarly, the second, third, and fourth MixColumns
transformations process on four bytes that are from different words on bus. Therefore,
using the traditional buses in the linear row-major order, such as the AMBA Advanced
High-Performance Bus (AHB) [AHB 1999], Advanced eXensible Interface (AXI) [AXI
2003], Wishbone [Wis 2003], and OCP [OCP 2001], the MixColumns/InvMixColumns
transformation cannot start until all the 128-bit data being buffered and shifted. More-
over, additional bus commands are needed when bus addresses are non-linear or non-
contiguous. The implementations of buffers and rearrangement can increase the slice
cost, the extra commands occupy bus cycles and reduce bus efficiency, and the frequent
toggle activities of logics, signals & IOs consume much dynamic power.

Fig. 1. AES State Processing.

In our previous work [Yang and Andrian 2014], a high-performance SBUS proto-
col is presented which is able to access data by crossing non-linear boundaries, guar-
anteeing the high-efficiency for both linear and block transfer modes. In this paper,
we make our focus on the remaining AES transfer type on the advanced SBUS (AS-
BUS) and try to utilize the fact that the AES cryptosystem uses a 4 × 4 matrix of
bytes in shifted/inverse-shifted column-major order. Since AES states are structured
in such a way, we propose the use of a novel state transfer, whereby a single command

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Improving Advanced Encryption Standard (AES) Core Performance via An Advanced SBUS (ASBUS) Protocol39:3

from a master in a master/slave transfer protocol can put multiple non-linear and pre-
scheduled data of states on the bus at the same time. This novel transfer mode does
not guarantee the high-performance inside the AES core but showing that the latency
and power overhead of the bus interface can be avoided by directly forwarding the
cipher processing. In the other words, the presented state transfer can significantly re-
duce the resource consumption for data buffering and rescheduling by pre-arranging
data transferred on bus. The proposed work includes our previous framework that
simulates a pre-scheduled interface on the AES engine [Yang and Wen 2017], and is
expanded to an advanced bus protocol with 32-, 64-, and 128-bit bus widths. Further-
more, The AES performance is also estimated using static analysis models, register
transfer level (RTL) designs, and FPGA based implementations. Our results show that
the ASBUS increases valid throughput to×1.30 and reduces dynamic energy to 71.27%
compared with AXI interface.

The organization of this paper is as follows: section 2 briefly reviews the related
works of AES designs, and section 3 introduces our AES core implementation and
our pervious work – the SBUS protocol. In section 4, our proposed ASBUS and the
novel state transfer mode are presented. Then, the bus latencies are statically formu-
lated and analyzed in section 5. In section 6, we implement the direct memory access
(DMA) located on ASBUS and AXI buses, combined with AES engines and memory
controllers, as our hardware designs. We also illustrate the RTL design, simulation,
synthesis, and power analysis in this section. The experimental results are shown in
section 7. Finally, section 8 concludes this paper.

2. RELATED WORK
Mathematically, AES operates on the state which is a 4× 4-byte matrix. Each state is
performed by 10, 12, or 14 rounds, and in each round, except for the final round, four
transformations, including SubBytes, ShiftRows, MixColumns, and AddRoundKey are
performed for encryption, while InvSubBytes, InvShiftRows, InvMixColumns, and Ad-
dRoundKey are performed for decryption.

Among the transformations in AES encryption/decryption, the Sub-
Bytes/InvSubBytes transformation is a non-linear operation requiring the highest area
and consuming much power of the circuit. Some of the earlier SubBytes/InvSubBytes
implementations are based on look-up table (LUT), such as those described in [Fis-
cher and Drutarovsky 2001; McLoone and McCanny 2001; K. Stevens 2005]. The
unbreakable LUT accessing limits the high-efficiency applications, such as parallel
computation and pipeline operations. Thus, an alternative composite field method
for the S-Box computation [Rijmen 2000] is suggested by V. Rijmen, who is one of
the AES inventors. Based on this finite field arithmetic, many high-performance
implementations are proposed to replace the LUT-based S-Box transformations
using combinational logics [Zhang and Parhi 2004; Canright 2005; Mui 2007;
J. Wolkerstorfer and Lamberger 2000; A. Satoh and Munetoh 2000].

Moreover, [Zhang and Parhi 2006] and [M. M. Wong and Hijazin 2012] analyze and
compare the complexity of the SubBytes/InvSubBytes implementation using different
irreducible polynomials. The AES performance is also considered on the core structural
level in [C. Hsing Wang and Wu 2010], [S. Fu Hsiao and Tu 2006; AReyhani-Masoleh
2012; Sklavos and Koufopavlou 2012; Hodjat and Verbauwhede 2006; Suntiamorn-
tut and Wittayapanpracha 2012]. For instance, the four primitive transformations are
decomposed, rearranged, and regrouped as new linear and non-linear operations in
[C. Hsing Wang and Wu 2010] to provide 1.28 Gigabits per second throughput for
128-bit keys. In [S. Fu Hsiao and Tu 2006], the transformations Affine/Inverse Affine,
ShiftRows/InvShiftRows, and MixColumns/InvMixColumns are combined into a single

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:4 X. Yang et al.

function unit Affine/ShiftRows/MixColumns or InvMixColumns/InvShiftRows/Inverse
Affine, and the substructure sharing algorithm is applied to reduce the area cost.

However, the previous research focuses on optimizing the inside of the AES engines,
assuming that data can be fed to the engines without any bus protocol overhead. From
the system point of view, traditional bus protocols, such as the AMBA AHB [AHB
1999] and AXI [AXI 2003] from ARM Holdings, Wishbone from Silicore Corporation
[Wis 2003], OCP from OCP-IP [OCP 2001], CoreConnect from IBM [Cor 1999], and
STBus from STMicroelectronics [STB 2004], are very low-efficiency to supply data in
the rectangular array of bytes. In fact, the bus interface plays a pivotal role in advanc-
ing the AES performance: the resource costs are influenced by the complexity of the
data buffering and scheduling, the speed is determined by the data-feeding efficiency,
and the energy consumption is dependent on the switching activities of logics, signals
& IOs.

3. BACKGROUND
In this section, we briefly illustrate our AES core design from the structural point of
view, and then introduce our previous work – the SBUS protocol.

3.1. AES Circuit Structure
The AES standard specifies the Rijndael algorithm, a symmetric block cipher that can
process 128-bit states, using cipher keys with lengths of 128, 192, and 256 bits. The
key length is represented by Nb=4, 6, or 8, which denotes the number of 32-bit data in
the cipher key. For the AES algorithm, the number of rounds to be performed depends
on the key size. It is represented by Nr, where Nr=10 when Nb=4, Nr=12 when Nb=6,
and Nr=14 when Nb=8. As a case study, we implement the 10-round AES algorithm
using the composite field arithmetic. In theory, the composite field of GF(28) can be
built iteratively from GF(2) using the irreducible polynomials [Paar 1994]:

GF (2)→ GF (22) : x2 + x+ 1 (1)

GF (22)→ GF ((22)2) : x2 + x+ φ (2)

GF ((22)2)→ GF (((22)2)2) : x2 + x+ λ (3)
First, x2+x+1 is the only irreducible polynomial of degree 2 over GF(2). Second, there

are two values of φ that make x2+x+φ irreducible over GF(22), and 8 possible values
of λ that make x2+x+λ irreducible over GF((22)2) constructed by using each of φ. All
together, there are sixteen ways to construct the composite field GF(((22)2)2)) using ir-
reducible polynomials in the equations. As an example, we implement the AES engine
using φ={10}2 and λ={1100}2 in our work.

Figure 2(a) shows our AES engine design based on a 32-bit interface or bus. For the
non-cipher transfers, the encryption engine can be bypassed using the read data path,
and the decryption engine can be bypassed using the write data path. For the cipher
tests, the AES engines are enabled.

There are two substages, substage1 and substage2, for both encryption and decryp-
tion processes. The SubBytes/InvSubBytes transformation is decomposed as a modular
inversion over GF(24) located in substage1 and four linear functions, A, IA, isomorphic
mapping (δ), and inverse isomorphic mapping (Iδ). In order to shorten the S-box criti-
cal path, IA is combined with δ (IA× δ) in substage1, and Iδ is merged with A (Iδ×A)
in substage2. In addition, the ShiftRows/InvShiftRows, MixColumns/InvMixColumns,
and AddRoundKey transformations are integrated in substage2 to obtain approxi-
mately equal delay to substage1. Concentrating on the bus efficiency, the key expan-
sion unit is configured by software through the control bus.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Improving Advanced Encryption Standard (AES) Core Performance via An Advanced SBUS (ASBUS) Protocol39:5

(a) AES Core (b) Black Boxes

(c) ShiftRows & MixColumns

(d) InvShiftRows & InvMixColumns

Fig. 2. AES Operator

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:6 X. Yang et al.

To simplify the description, we consider all the operators as black boxes as shown in
Figure 2(b). As an example, we combine the multiplication with constant λ and squar-
ing in GF(24) to reduce the combinational logic cost and shorten the critical path. Let
“a” denote the input and “b” denote the output in a one-in, one-out black box hereafter.
The bit-width of “a” and “b” are 8-, 4-, and 2-bit, respectively, when the operator is in
GF(28), GF(24), and GF(22) fields. Hence, the logic design can be modified as below:

b3 =a2 ⊕ a1 ⊕ a0
b2 =a3 ⊕ a0
b1 =a3

b0 =a3 ⊕ a2

(4)

In equation 4, the multiplication with constant λ and squaring in GF(24) is imple-
mented by “XOR” gates denoted as “⊕” hereafter. Using the combining logic, the design
of λ × sq x is optimized as 4 “XOR” gates with 2 “XOR” gates in the critical path. It
reduces one “XOR” gate delay in the critical path compared to [Zhang and Parhi 2006].

Likewise, the inversion in GF(24) field of the modular inversion (inv x) can be imple-
mented as a 4-bit input and 4-bit output black box, and the other operators, including
δ and Iδ, A and IA, can be implemented as 8-bit input and 8-bit output black boxes,
which are shown in Figure 2(b).

For a two-in, one-out assignment, let “a” and “b” denote 2 inputs, and “c” denote
the output hereafter. The bit-width of “a”, “b”, and “c” are 4-bit and 2-bit, respectively,
when the operator is in GF(24) and GF(22). As an example, the multiplication in GF(24)
field of the modular inversion can be further decomposed into multiplication in GF(22),
and then to GF(2). Assume c=a × b, where a=aHx+aL and b=bHx+bL. Here, aH and bH
are the upper half term, and aL and bL are the lower half term. Then, the product of a
and b is

c = (bHaH + bHaL + bLaH)x+ bHaHϕ+ bLaL (5)

This equation is in the form of GF(22). In order to decompose the GF(22) multiplica-
tion to GF(2), the logic for computing GF(2) multiplication is rewritten as

c1 =b1a1 ⊕ b0a1 ⊕ b1a0
c0 =b1a1 ⊕ b0a0

(6)

and the logic for computing GF(2) multiplication with constant ϕ is

b1 =a1 ⊕ a0
b0 =a1

(7)

Using equation 6 and equation 7, the multiplication in GF(24) can be implemented
in hardware as a two 4-bit inputs and one 4-bit output black box involving only “XOR”
and “AND” gates, as shown in Figure 2(b).

As a 32-bit input and 32-bit output black box, MixColumns/InvMixColumns trans-
formation processes on shifted/inverse-shifted columns of a state. Let the prefix “s ”
denote the MixColumns output signal and “is ” denote the InvMixColumns output sig-
nal. The logic implementations of MixColumns and InvMixColumns are rewritten as:

s s0 ={02}(s0 ⊕ s5)⊕ sa ⊕ sf ⊕ s5
s s1 ={02}(s9 ⊕ se)⊕ s3 ⊕ s4 ⊕ se
s s2 ={02}(s2 ⊕ s7)⊕ s8 ⊕ sd ⊕ s7
s s3 ={02}(sb ⊕ sc)⊕ s1 ⊕ s6 ⊕ sc

(8)

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Improving Advanced Encryption Standard (AES) Core Performance via An Advanced SBUS (ASBUS) Protocol39:7

is s0 = ({02}(s0 ⊕ sd)⊕ sa ⊕ s7 ⊕ sd)⊕
({02}({04}(s0 ⊕ sa) + {04}(sd ⊕ s7)) + {04}(s0 ⊕ sa))

is s1 = ({02}(s1 ⊕ se)⊕ sb ⊕ s4 ⊕ se)⊕
({02}({04}(s4 ⊕ se) + {04}(s1 ⊕ sb)) + {04}(s1 ⊕ sb))

is s2 = ({02}(s2 ⊕ sf)⊕ s8 ⊕ s5 ⊕ sf)⊕
({02}({04}(s8 ⊕ s2) + {04}(s5 ⊕ sf)) + {04}(s8 ⊕ s2))

is s3 = ({02}(s3 ⊕ sc)⊕ s9 ⊕ s6 ⊕ sc)⊕
({02}({04}(sc ⊕ s6) + {04}(s9 ⊕ s3)) + {04}(s9 ⊕ s3))

(9)

In equation 8 and 9, sx represents the hexadecimal number of byte in the raw state.
For example, the first MixColumns output processes on the s0, s5, sa, and sf bytes of
the raw state, and the first InvMixColumns output processes on the s0, sd, sa, and s7
bytes of the raw state, which are shown in Figure 2(c) and Figure 2(d). In the other
words, the four input bytes of the MixColumns/InvMixColumns transformation are
selected from four different substituted words or state columns. Since the algorithm
processes data in such a way, we optimize the data transfer by feeding selected bytes
from data bus for AES engines.

3.2. SBUS Interface
We proposed a high performance on-chip data communication standard termed the
Master-Slave bus (MSBUS) in [Yang and Andrian 2014]. It is composed of a control
bus (MBUS) and a data bus (SBUS). The control bus (MBUS) is developed as a low-
cost and low-power bus, and the data bus (SBUS) is created as a high-throughput
full-duplex bus with the feature of block data transfer. In this section, we focus on
introducing SBUS interface and the communication protocol.

As a multi-master and signal-slave bus, all the data transfer requests, denoted as
REQs, from SBUS masters must be granted access to SBUS first. Only the master
with the highest-priority can start a transfer when granted use of the bus, denoted by
GNT, by an arbiter. Then, the signals providing information on the address (ADDR),
direction (WR), and length (LEN[9:0]) of the transfer, as well as the current transfer
mode indicated by the most two significant bits of the LEN[11:10] signal, can be sent by
the granted master. Each bit of the write data valid signal (WD VLD[3:0]) represents
the corresponding valid byte of the word-size write data (WDATA[31:0]). Moreover,
slaves must send a data response (RESP[1:0]), RESP[1] for write and RESP[0] for
read, within a timeout window.

As an example shown in Figure 3, there are two bus operations, one write followed
by one read. Each operation consists of two distinct sections: the command phase,
involving the bus arbitration and commands, and the data phase including several
cycles depending on the burst length. First, the slave cannot receive the write data
in cycle 4 and 7 as represented by the de-asserted ready signal RESP[1]. The master
thus must hold the write data, 32’h04 and 32’h0c, for another one clock cycle. In cycle
6, the read ready signal denoted by RESP[0] is de-assert, meaning that the read data
on SBUS is not available or unstable in this cycle. Hence the master needs to wait one
more cycle for a valid read data.

4. PROPOSED ASBUS PROTOCOL
This section presents an ASBUS for designing low-power and high-speed AES-
encrypted microcontrollers. It provides a novel state transfer mode, and also backward
supports the conventional linear and block transfer modes.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:8 X. Yang et al.

Fig. 3. SBUS/ASBUS Timing Diagram.

(a) Linear (b) Block

Fig. 4. Transfer Modes

4.1. Linear and Block Transfer Modes
Before discussing the state transfer mode, we briefly illustrate the traditional linear
and block transfer types. In ASBUS, we define a bus transfer as a linear operation
when the LEN[11:10] signal is binary 2’b00 and a block operation when 2’b01. As a
linear transfer shown in Figure 4(a), the LEN[9:0] signal gives the exact data number
in the row-major order for ASBUS, and the AWLEN signal indicates the number of
data transfers in a burst for AXI.

Apart from traditional linear data transfer, the block transfer is supported by
ASBUS to improve the performance of matrix-based applications in some specific
fields, such as image processing [Gonzalez and Woods], computer vision, and wire-
less communication [wir 1999]. It defines the rectangle size and makes every memory
boundary-crossing command computable by hardware, so that the time consumption
of software configuration and bus commands is reduced. As shown in Figure 4(b), the
LEN[5:0] signal denotes the block height and the LEN[9:6] signal denotes the block
width. Since the non-linear addresses are computable by hardware using the ASBUS
protocol, only the initial address (ADDR0) is needed for the entire bursts. In the con-
trast, each boundary-crossing addresses, from ADDR0 to ADDRX, should be initiated
by the granted master using traditional buses. As an example, AWLEN represents the
burst length of each linear transfer for the AXI bus.

Furthermore, Figure 5 compares the AXI and ASBUS timing diagrams as a case
study. In Figure 5(a), one address stage and one response stage are needed to transfer
four words in linear mode using AXI. The one response cycle can be reduced using AS-
BUS as shown in Figure 5(b), however, because the data received/valid signal (RESP)
is driven in the same cycle of the data stage (DATA).

Figure 5(c) and Figure 5(d) show the examples of 4 × 4-byte matrix transfer. Using
the AXI bus, four boundary-crossing or noncontiguous addresses (A0, A1, A2, and A3)
associated with four responses (R0, R1, R2, and R3) are required to access the ma-

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Improving Advanced Encryption Standard (AES) Core Performance via An Advanced SBUS (ASBUS) Protocol39:9

(a) AXI Linear (b) ASBUS Linear

(c) AXI Block (d) ASBUS Block

Fig. 5. Transfer Timing

trix. However, only the initial address (A) is needed using ASBUS. All the non-linear
addresses can be calculated by hardware, which is defined by the ASBUS protocol.

4.2. Proposed State Transfer Mode
A novel transfer mode, the AES state transfer, is the main contribution to the ASBUS
architecture in this paper. It advantageously optimizes data supply efficiency involv-
ing encryption/decryption processing. This transfer mode may reduce the processing
load of data scheduling and buffering and power consumption in system environments
making use of AES cryptographic processing.

Figure 6 shows the memory layout, where only one address (ADDR) is required to
transfer several AES states (from S 00 to S XY). First, in the AES state transfer mode,
the “AES state” is adopted as the basic unit of data transfer on the ASBUS. Second,
the AES state transfer is processed on the ASBUS in the column-major order, rather
than the row-major order as the linear and block transfer types. Third, in a “read”
operation, the plaintext state is cyclically-shifted into the encryption engine, and in a
“write” operation the ciphertext state is cyclically-inverse-shifted into the decryption
engine.

Fig. 6. State Transfer Mode.

More specifically, Figure 7(a) illustrates a two-state transfer example. Assume the
byte sequence in the raw state is hexadecimal “0” to “3”, “4” to “7”, “8” to “b”, “c” to “f”
for the first, second, third, and fourth columns, respectively. However, the first write
data driven on the 32-bit ASBUS is “0”, “5”, “a”, and “f”, the second write data sequence
is “4”, “9”, “e”, and “3”, the third write data sequence is “8”, “d”, “2”, and “7”, and the

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:10 X. Yang et al.

fourth write data sequence is “c”, “1”, “6”, and “b”. In such a way, the write data selected
from each column of the state array can be mixed and encrypted immediately.

Likewise, the first read data sequence is “8”, “5”, “2”, and “f”, the second read data
sequence is “c”, “9”, “6”, and “3”, the third read data sequence is 8, 5, 2, and f, and the
fourth read data sequence is c, 9, 6, and 3, which are cyclically shifted before entering
the encryption engine. Therefore, the selected read data from each column of the state
array can be inversely mixed and decrypted immediately.

In addition, notice that only one command (C0) is needed to access two AES states
(S0 and S1). In Figure 7(b) and Figure 7(c) , the “LEN[11:10]” signal is binary 2’b10,
and the other bits represents the state number as two states. Each bit of WD VLD
indicates the valid byte of the write data, “1’b1” for valid and “1’b0” for invalid. The
write data is rescheduled in the cyclically-inverse-shifted order, and the read data is
rescheduled in the cyclically-shifted order.

Finally, we compare the bus transfers between AXI and ASBUS. As an example
shown in Figure 8(a), six command cycles, involving four addresses (A0, A1, A2,
and A3) and four responses (R0, R1, R2, and R3) with two of them overlapped, are
needed. The sustatge1 of the first encryption round starts at the T4 cycle after the
first data being stably sampled. However, the sustatge2 cannot be started immedi-
ately, due to the requirement of the shifted/inverse-shifted rows of the state for the
MixColumns/InvMixColumns transformation. In this case, the substage2 cannot be
initiated until the whole state being buffered and rescheduled at the T7 cycle. In sum,
the first round costs eleven cycles for one state encryption.

Comparing with AXI bus, ASBUS uses only the initial address (A) to transfer mul-
tiple states. More important, the substage2 can be immediately started after the first
word of substage1 being stably sampled at the T4 cycle, because each word of substage1
is pre-scheduled by ASBUS and ready-to-use for the MixColumns/InvMixColumns
transformation. Likewise, the second, third, and fourth words of the state can be con-
secutively encrypted at the T5, T6, and T7 cycles.

5. STATIC ANALYSIS MODELS
In this section, we formulate and compare performance metrics of AXI and ASBUS to
estimate ASBUS efficiency.

5.1. Transfer Latency Models
In order to focus on the bus efficiency, we assume that the bus grant to any request
and the bus response to any transfer are always available immediately. So both of the
arbitration and the command cost only two clock cycles. In addition, the request, grant,
and address transactions can be overlapped between two back-to-back transfers.

Let PXL and PAL, respectively, denote the probability of the back-to-back transfers
of AXI and the probability of the back-to-back transfers of ASBUS in the linear mode.
Hence, the AXI linear (XL) transfer latency, denoted by CYXL, can be formulated as

CYXL = 4× ceil(NL

XS
) +NL − 2× ceil(NL

XS
)× PXL. (10)

where NL represents the number of data bursts, and PXS ranges from 0 to
[ceil(NL/XS)-1]/ceil(NL/XS). In this equation, the ceil() function represents that rounds
fraction up. XS indicates the maximum AXI burst size, specified by ARLEN for read
and AWLEN for write, which is 16 for AXI3 or 256 for AXI4 compatibility [?]. Each
AXI transfer requires four cycles for arbitration and command stages, two cycles for
handshaking between a request and a grant, one cycle for address, and one cycle for re-
sponse. When two transfers are back-to-back, two command cycles can be overlapped.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Improving Advanced Encryption Standard (AES) Core Performance via An Advanced SBUS (ASBUS) Protocol39:11

(a) Data Access

(b) Write Command

(c) Read Command

Fig. 7. State Transfer Access

(a) AXI State Transfer (b) ASBUS State Transfer

Fig. 8. State Transfer Timing

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:12 X. Yang et al.

In contrast, ASBUS integrates the arbitration and address phases together, and also
combines the data and slave-driven response phases. Therefore, it uses only two cycles
with an immediate grant. The total latency of ASBUS transfers, denoted by CYAL,
thus is

CYAL = 2× ceil(NL

AS
) +NL − 2× ceil(NL

AS
)× PAL. (11)

where AS represents the maximum ASBUS transfer size, which is 1024 beats for
the 10-bit ASBUS transfer length signal. In this equation, P(AL) ranges from 0 to
[ceil(NL/AS)-1]/ceil(NL/AS).

AXI protocol does not define how to access data by block, so designers must consider
the specific operations for the matrix-based applications and algorithms. Using the
AXI linear transfer type, the cycle cost for a block processing can be calculated as

CYXB = 4×NH × ceil(
NW

XS
) +NH ×NW − 2×NH × ceil(

NW

XS
)× PXB . (12)

Here, NW and NH , respectively, denote the block width and block height. PXB rep-
resents the probability of the back-to-back AXI transfers within the same row, ranging
from 0 to [NH × ceil(NW /XS)-1]/[NH × ceil(NW /XS)].

ASBUS requires only one command stage for each matrix access by means of the
build-in boundary-crossing scheme using the block transfer. Thus, the total cycle cost
of an ASBUS block transfer can be formulated as

CYAB = 2× ceil(NH

AH
)× ceil(NW

AW
) +NH ×NW − 2× ceil(NH

AH
)× ceil(NW

AW
)×PAB . (13)

where AH and AW are the maximum block height and the maximum block width
that can be processed by the ASBUS block transfer. In this work, AH is 64 due to
the 6-bit block height signal LEN[5:0], and AW is 16 due to the 4-bit block width sig-
nal LEN[9:6]. PAB denotes the probability of the back-to-back ASBUS block transfers,
ranging from 0 to [ceil(NH /AH) × ceil(NW /AW)-1]/[ceil(NH /AH) × ceil(NW /AW)].

Finally, the latency of the AES cipher tests using AXI and ASBUS is consid-
ered. In our work, not only the command and data cycles but also the AES encryp-
tion/decryption latency is calculated. Assume that the encryption/decryption process-
ing is fully pipelined, each cipher round thus uses five clock cycles for the 32-bit bus,
in which four cycles are consumed by substage1 and four cycles are consumed by sub-
stage2 with three of them overlapped. Likewise, three cycles are needed for the 64-bit
bus and two cycles are needed for the 128-bit bus to complete each AES state round.
Furthermore, assume that all the transfers are back-to-back, and the command stages,
data stages, and AES cipher/inverse-cipher operations are completely overlapped. The
total number of cycles spent by the 32-, 64-, and 128-bit AXI encryption/decryption
(XE) procedures are

CYXE32 = 2 + 6×NE + 50×NE − (12×NE + 38×NE)× PXE . (14)

CYXE64 = 2 + 4×NE + 30×NE − (6×NE + 24×NE)× PXE . (15)

CYXE128 = 2 + 3×NE + 20×NE − (3×NE + 17×NE)× PXE . (16)

whereNE denotes the number of AES states. In these three equations, the AXI back-
to-back probability, denoted as P(XE), ranges from 0 to (NE-1)/NE .

Using the specific state transfer mode, ASBUS consumes only one command to
transfer multiple AES states. The number of data cycles depends on the ASBUS width.
For instance, the 32-, 64-, and 128-bit ASBUS, respectively, need 4N , 2N , and N data

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Improving Advanced Encryption Standard (AES) Core Performance via An Advanced SBUS (ASBUS) Protocol39:13

Table I. Modeling Performance Comparison

Tests CY
AXI linear (4− 2P)ceil(NL

XS
) +NL

ASBUS linear (2− 2P)ceil(NL
AS

) +NL

AXI block (4− 2P)×NH × ceil(NW
XS

) +NH ×NW

ASBUS block (2− 2P)× ceil(NH
AH

)× ceil(NW
AW

) +NH ×NW

AXI Cipher32 2 + 2NE(28− 25P)
AXI Cipher64 2 + 2NE(17− 15P)
AXI Cipher128 2 +NE(23− 20P)
ASBUS Cipher32 2 + 2NE(27− 25P)
ASBUS Cipher64 2 + 2NE(16− 15P)
ASBUS Cipher128 2 +NE(21− 20P)

cycles to transfer NE states. Hence, the total cycles consumed by ASBUS encryp-
tion/decryption (AE) tests are

CYAE32 = 2 + 4×NE + 50×NE − (4×NE + 46×NE)× PAE . (17)

CYAE64 = 2 + 2×NE + 30×NE − (2×NE + 28×NE)× PAE . (18)

CYAE128 = 2 +NE + 20×NE − (NE + 19×NE)× PAE . (19)
for the 32-, 64-, and 128-bit ASBUS, respectively. In Table I, we simplify and sum-

marize all the above analysis using the back-to-back probability ranging from 0 to 1.

5.2. Static Performance Analysis
In what follows, we compare the bus latency using AXI and ASBUS in Figure 9. The
burst sizes are 80 words, 10×8 words, and 20 AES states, respectively, for linear, block,
and state transfer tests. In the other words, NL, NH NW , and NE , are 80, 8, 10, and
20, respectively, in Table I. The horizontal axis represents the back-to-back probability
(P) ranging from 0 to 0.95.

In Figure 9(a), it can be observed that the latency can be reduced when many data
transfers are back-to-back, or the back-to-back probability is high. When the prob-
ability reaches the maximum 0.95, the clock cycles consumed by the ASBUS linear
transfers are 88.51%, 86.61%, and 83.06% compared with the AXI linear tests for 32-,
64-, and 128-bit buses, respectively. Likewise, the clock cycles consumed by the ASBUS
block transfers are 82.75%, 82.85%, and 70.77%, respectively, compared with the AXI
block tests, for all the three bus sizes’ tests, which is shown in Figure 9(b).

Furthermore, the comparison between AXI and ASBUS cipher tests are shown in
Figure 10. For the same bus sizes, the ASBUS cipher test costs less cycles than the
AXI transfer, particularly when the back-to-back probability is high. As an example,
when the back-to-back probability is the maximum 0.95, the clock cycles consumed
by ASBUS transfers are 76.74%, 64.29%, and 51.22% compared with AXI transfers
for 32-, 64-, and 128- buses, respectively. Additionally, the latency of ASBUS tests are
96.43%, 94.13%, 91.32% of AXI tests when the probability is 0. Thus, the novel state
transfer mode can achieve higher throughput than AXI, particularly the bus transfers
are frequent and consecutive.

Second, the resource costs are considered statically. To improve the AES speed, we
need to pay for large overhead logics and optimize the number of parallel resource
costs. Figure 11 shows the pipeline structures and the resource costs depending on
different bus-based implementations. Let S denote the logic utilization of substage1,
and let M denote the logic cost of substage2. When the bus size is 32-bit as shown in
Figure 11(a), four parallel S (4S) connected with one M (1M) instances are necessary
to internally pipeline and parallel all the ten-round cipher/inverse-cipher processing
per state.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:14 X. Yang et al.

(a) Linear

(b) Block

Fig. 9. Static Performance Analysis.

Furthermore, the resources are doubled to externally parallel the write and read
channels of the full-duplex bus. As the 64-bit bus-based implementation shown in
Figure 11(b), the cipher/inverse-cipher processing can be sped up, but the S and M
instances are doubled. It requires 8 S (8S) and 2 M (2M) instances for the encryp-
tion/decryption process of each round to make all the data transfer internal pipeline
and parallel. Similarly, sixteen S (16S) and four M (4M) of each round are necessary to
the 128-bit bus-based implementation shown in Figure 11(c).

As an alternative technology to the ASIC design, FPGA implements the basic com-
binational logic by the 2k-bit static random-access memory (SRAM), which represents
a K-input and one-output LUT. Different from the logic gate computation, it is capa-
ble of realizing any Boolean function of up to K variables by loading the SRAM cell
with the truth table of that function. Therefore, although the 128-bit bus design costs

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Improving Advanced Encryption Standard (AES) Core Performance via An Advanced SBUS (ASBUS) Protocol39:15

Fig. 10. Static Performance Analysis for State Transfer.

(a) 32-bit bus

(b) 64-bit bus (c) 128-bit bus

Fig. 11. Pipeline Structures of AES Cores.

more S and M instances, it reduces the FPGA slice usage due to the short path of
each cipher/inverse-cipher round. However, comparing with 32-bit bus, the 128-bit bus
sacrifices the power consumption due to the high toggle activity of IOs and signals.

6. HARDWARE IMPLEMENTATION
This section presents all the 32-, 64-, and 128-bit implementations using AXI and
ASBUS, targeted to accurately evaluate the architectural performance. We use Ver-
ilog HDL [Ver 2001] to complete the RTL design, and set up a universal verification
methodology (UVM) [uvm 2011] and [uvm 2012] environment to verify all the design
under tests (DUTs). Finally, the FPGA back-end flow is performed to estimate the area
cost and power consumption.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:16 X. Yang et al.

6.1. RTL Design and Verification
In our study, we implement all the 32-, 64-, and 128-bit AXI and ASBUS DMAs, com-
bined with AES cores and memory controllers (XDAM and ADAM) as the DUTs. As
the design structure shown in Figure 12, the XDAM/ADAM can be accessed by all
the masters located on AXI/ASBUS. All the master requests are granted sequentially,
according to each master’s priority. The arbiter performs this function by observing
a number of different requests, and deciding which is currently the highest priority
master.

In addition, eight commands can be preprocessed using command queues. The data
path modules – write data path and read data path, are used to multiplex cipher and
non-cipher data processing between AXI/ASBUS masters and memory. More specif-
ically, the AES ENC/DEC engine is bypassed for the conventional linear and block
transfers. For the cipher tests, the write data path decrypts the ciphertexts then writes
the plaintexts into memory, or the read data path encrypts the plaintexts from memory
then transfer the ciphertexts on AXI/ASBUS. Finally, the memory controller’s address,
mapping from hexadecimal 0x00 to 0xff, is used to provide the control signals for ex-
ternal memory.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Improving Advanced Encryption Standard (AES) Core Performance via An Advanced SBUS (ASBUS) Protocol39:17

Fi
g.

12
.

A
D

A
M

St
ru

ct
ur

e.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:18 X. Yang et al.

Fig. 13. UVM Environment.

To verify DUTs and evaluate transfer performance, we build up a UVM-based veri-
fication environment shown in Figure 13. It integrates four encapsulated ready-to-use
and configurable verification agents: the micro-processor, the memory phy, and two
AXI/ASBUS masters indicated as Peripheral OVC #1 (USB2.0 Host Controller) and Pe-
ripheral OVC #2 (Wi-Fi Mac). Each of them contains three components: the sequencer,
driver, and monitor.

The typical test cases used in our study are that 40 words, 10× 4 words, and 10 AES
states are written into memory then read out. The non-cipher tests, including linear
and block tests, bypass the AES engines. In contrast, the cipher tests employ the AES
core as data encryption/decryption. For example, the USB2.0 agent initiates a 10-state
write command to the data bus. The initial address is hexadecimal 0x00 and the data
on AXI/ASBUS are ciphtertext. Then, our DUT, the XDAM or ADAM, responds to the
request, decrypts the ciphertext, and then writes the plaintext into memory. To verify
the bus function, the Wi-Fi Mac agent requests a 10-state read operation to the same
memory address. Likewise, our DUT responds the request, reads data out and encrypts
the plaintext to be ciphertext, and then sends them on AXI/ASBUS.

6.2. Area and Power Analysis
In what follows, all the 32-, 64-, and 128-bit XDAMs and ADAMs are synthesized
and placed & routed using Xilinx ISE 14.7 with the target device Virtex6xc6vlx550t-
2ff1760 [xil 2012]. Then, several fully placed & routed native circuit description (NCD)
and physical constraint files (PCF) are generated.

Table II shows the synthesis results, including IO number, resource utilization, and
the maximum operational frequency (MOF). In the second column, it can be observed
that ADAM uses less IOs than XDAM for the same bus sizes. For different bus sizes,
it is obvious that the 128-bit bus costs much more IOs than the 32- and 64-bit buses.
As shown in the third column, the total number of occupied slices of ADAMs are less
than the XDAMs for all the 32-, 64-, and 128-bit buses. Moreover, the compact ASBUS
structure achieves higher operational clock frequency than AXI, for all the three bus
sizes, which is shown in the fourth column.

Furthermore, inputting all the NCD and PCF files, as well as the simulation value
change dump (VCD) files into the XPower Analyzer tool, the power statistics of AXI-
and ASBUS-based designs can be obtained in Table III. Since static power consump-

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Improving Advanced Encryption Standard (AES) Core Performance via An Advanced SBUS (ASBUS) Protocol39:19

Table II. Resource Comparison

Resource Costs IOs Slices MOF (MHz)
32-bit XDAM 533 26106 133.010
32-bit ADAM 324 24822 183.636
64-bit XDAM 661 22603 131.528
64-bit ADAM 460 21319 176.154
128-bit XDAM 917 18344 130.152
128-bit ADAM 732 17060 184.176

Table III. Power Consumption

Test Cases Static Power
(mW)

Dynamic Power
(mW)

Total Power
(mW)

32-bit AXI linear 3799 612 4411
64-bit AXI linear 3796 577 4373
128-bit AXI linear 3797 623 4420
32-bit ASBUS linear 3796 574 4370
64-bit ASBUS linear 3794 540 4335
128-bit ASBUS linear 3796 584 4381
32-bit AXI block 3801 752 4553
64-bit AXI block 3812 971 4783
128-bit AXI block 3826 1263 5089
32-bit ASBUS block 3798 695 4493
64-bit ASBUS block 3802 927 4729
128-bit ASBUS block 3828 1226 5054
32-bit AXI Cipher 3805 771 4576
64-bit AXI Cipher 3818 1063 4881
128-bit AXI Cipher 3852 1747 5599
32-bit ASBUS Cipher 3802 716 4518
64-bit ASBUS Cipher 3816 995 4810
128-bit ASBUS Cipher 3847 1650 5497

tion is mostly determined at the circuit level, the static power of the same design is
almost a constant for different test cases, as shown in the second column. Our work,
thus, concentrates on analyzing dynamic power shown in the third column.

First of all, it can be observed that the ASBUS tests consume less dynamic power
compared with AXI tests, because of the less toggle rate of logics, signals, and IOs.
In addition, the wider bus consumes more dynamic power in all the block and cipher
tests. In the linear mode, however, the 32-bit bus consumes more dynamic power than
the 64-bit bus, because the signal and IO switching rate is very low in this case and
the clock power becomes the dominant factor of the dynamic power consumption.

7. EXPERIMENTAL RESULTS
In this section, we summarize the experimental results involving clock cycle (CY), dy-
namic energy (DE), valid bandwidth (VDB), dynamic energy (DE), slice efficiency (SE),
and dynamic energy efficiency (DEE) in Table IV.

It is clear to illustrate the performance comparison between ADAM and XDAM in
Figure 14. Figure 14(a) and Figure 14(b) show the performance ratios of non-cipher
tests, including linear and block cases. Since all the time consumption ratios are less
than 1, ASBUS consumes less time than the AXI for all the three bus sizes. Particularly
for the block tests, the latency of ASBUS are 83.67%, 84.00%, and 73.33%, respectively,
compared with AXI for all the 32-, 64-, and 128-bit buses.

Additionally, the dynamic energy, which is the integral of dynamic power, or the
product of average dynamic power and transfer time, is considered. Although the dy-
namic power consumed by ADAM and XDAM are close to each other, the dynamic
energy consumption of ASBUS linear tests are 83.60%, 81.89%, and 79.32%, respec-
tively, compared with the AXI linear tests, and the dynamic energy consumption of

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:20 X. Yang et al.

Table IV. Experimental Results Comparison

Tests Clock Cycles VDB
(GBps)

DE
(uJ)

SE
(KBps/Slice)

DEE
(GBps/J)

32-bit AXI linear 92.00 0.70 0.56 26.65 1.14
64-bit AXI linear 48.00 1.33 0.28 58.99 2.31
128-bit AXI linear 26.00 2.46 0.16 134.19 3.95
32-bit ASBUS linear 82.00 0.78 0.47 31.44 1.36
64-bit ASBUS linear 42.00 1.52 0.23 71.48 2.82
128-bit ASBUS linear 22.00 2.91 0.13 170.52 4.98
32-bit AXI block 98.00 0.65 0.74 25.02 0.87
64-bit AXI block 50.00 1.28 0.49 56.63 1.32
128-bit AXI block 30.00 2.13 0.38 116.30 1.69
32-bit ASBUS block 82.00 0.78 0.57 31.44 1.12
64-bit ASBUS block 42.00 1.52 0.39 71.48 1.64
128-bit ASBUS block 22.00 2.91 0.27 170.52 2.37
32-bit AXI Cipher 172.00 0.37 1.33 14.25 0.48
64-bit AXI Cipher 112.00 0.57 1.19 25.28 0.54
128-bit AXI Cipher 82.00 0.78 1.43 42.55 0.45
32-bit ASBUS Cipher 132.00 0.48 0.95 19.53 0.68
64-bit ASBUS Cipher 72.00 0.89 0.72 41.69 0.89
128-bit ASBUS Cipher 42.00 1.52 0.69 89.32 0.92

ASBUS block tests are 77.33%, 80.19%, and 71.19%, respectively, compared with the
AXI block tests, for all the 32-, 64-, and 128-bit bus implementations.

Moreover, based on the fair assumption of the same operational clock frequencies for
ASBUS and AXI, the conventional bandwidth between full-duplex ASBUS and AXI
are the same. However, when we consider the valid data bandwidth defined as the
valid data without protocol overhead that can be transferred in one cycle, the ASBUS
surpasses AXI due to the high-efficient protocol. For example, the valid data bandwidth
of ASBUS linear test is 1.18 times of AXI linear test, and the valid data bandwidth of
ASBUS block test can reach 1.36 times of AXI block test, when the bus size is 128 bit.

Furthermore, the slice efficiency is also computed in terms of valid data number that
can be transferred per second per slice. It can be observed that the slice efficiency of
ASBUS linear tests are around 1.27 times of AXI linear tests, and the slice efficiency
of ASBUS block test is 1.47 times compared with AXI block test when the bus size is
128 bits.

Finally, dynamic energy efficiency is defined in terms of valid data number that
can be transferred per second per watt, or valid data number that can be transferred
per joule. The dynamic energy efficiency of ASBUS linear tests are around 1.26 times
compared with AXI linear tests for all the three bus-size designs, and the dynamic
energy efficiency of ASBUS block test can reach 1.40 times of AXI block test when the
bus size is 128 bits. In other words, ASBUS can transfer 1.40 times as much data as
AXI with the same time and power consumption in this case.

In this paper, we focus on comparing the performance of cipher tests shown in Fig-
ure 15. It can be observed that the ASBUS cipher tests achieve higher performance
than the AXI tests. First of all, the clock cycles spent by ASBUS cipher tests are
76.74%, 64.29%, and 51.22%, respectively, compared with AXI cipher tests for 32-, 64-,
and 128-bit bus sizes.

Second, the dynamic energy consumed by the ASBUS cipher tests are 71.27%,
60.17%, and 48.38% compared with the AXI cipher tests for the 32-, 64-, and 128-
bit buses, respectively, although the dynamic power of ASBUS cipher tests and AXI
cipher tests are very close to each other.

Third, the conventional bandwidth and valid data bandwidth of the ASBUS cipher
transfers can reach 2.95 GBps and 1.52 GBps, respectively, on the 128-bit ASBUS. The

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Improving Advanced Encryption Standard (AES) Core Performance via An Advanced SBUS (ASBUS) Protocol39:21

(a) Linear

(b) Block

Fig. 14. Performance Comparison.

ADAM/XDAM valid data bandwidth ratios are 1.30, 1.56, and 1.95, respectively, when
the bus size is 32, 64, and 128 bits.

Finally, we consider the slice efficiency and dynamic energy efficiency of all the AXI
and ASBUS tests. The 128-bit ASBUS cipher test can transfer 89.32 Kbytes per second
per slice cost. As the highest slice efficiency of all the cipher tests, it is 2.10 times
compared with the 128-bit AXI Cipher test.

Additionally, the dynamic energy efficiency of the ASBUS cipher tests are 1.40, 1.66,
and 2.07 times compared with the AXI cipher tests for the 32-, 64-, and 128-bit buses,
respectively. In the other words, ASBUS can transfer 2.07 times as much data as AXI
with the same time and power consumption when bus sizes are 128 bits.

In conclusion, the AES system performance of ASBUS surpasses that of AXI due
to the high-efficiency state transfer mode. Moreover, the 128-bit implementations cost

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:22 X. Yang et al.

Fig. 15. Cipher Test Performance Comparison.

more IOs and dynamic power, but achieve higher slice efficiency and dynamic energy
efficiency than 32- and 64-bit buses. Considering the design requirements and resource
limitation, designers can choose different bus sizes based implementations.

8. SUMMARY
In this paper, we propose an advanced SBUS architecture for the AES-encrypted SoCs.
To the best of our knowledge, it is the first performance analysis for AES circuits from
the bus protocol perspective. As the results, the ASBUS based designs cost less in
terms of hardware resource than the AXI based implementations, and the ASBUS ci-
pher tests achieve higher valid bandwidth and consume less dynamic power than AXI.
Based on the ASBUS architecture, we also evaluate the performance on different bus
sizes. To sum up, the 128-bit design achieves higher valid bandwidth, but consumes
more dynamic power than the 32- and 64-bit designs. In contrast, the 32-bit design
consumes the least power but sacrifices bandwidth. Based on the resource and perfor-
mance requirements, users can choose the proposed ASBUS implementations to fulfill
the tradeoffs of different applications.

With the emerging area of Internet-connected tiny-size chips, leveraging limited
computing resource and overhead cost for complex security mechanisms at the SoC
level is a challenging issue. By optimizing the data-feeding efficiency using a novel
bus, we believe that our work provides a solution for the AES-encrypted circuits to
meet high-security and high-performance chip requirements.

REFERENCES
1999. AMBA Specification. Axis, Sunnyvale, CA, USA.
1999. CoreConnect Bus Architecture. IBM, Yorktown Heights, New York, NY, USA.
1999. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification. IEEE Standard

802.11-1999.
2001. Open Core Protocol Specification. OCP Int. Partnership, Beaverton, OR, USA.
2003. AMBA AXI Protocol Specification. Axis, Sunnyvale, CA, USA.
2003. Wishbone BUS. Silicore Corp., Corcoran, MN, USA.
2004. STBus Interconnect. STMicroelectronics, Geneva, Switzerland.
January 2012. Xilinx, Virtex-6 Family Overview.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Improving Advanced Encryption Standard (AES) Core Performance via An Advanced SBUS (ASBUS) Protocol39:23

June 2011. UVM 1.1 Reference Manual. Accellera, Tualatin, OR, USA.
May 2012. UVM 1.1 User Guide. Accellera, Tualatin, OR, USA.
November 2001. FIPS PUB 197, Advanced Encryption Standard (AES). National Institute of Standards and

Technology, U.S. Department of Commerce.
Sep, 2001. IEEE Standard Verilog Hardware Description Language. The Institute of Electrical and Elec-

tronics Engineers, Inc., 3 Park Ave., NY, USA.
K. Takano A. Satoh, S. Morioka and S. Munetoh. December 2000. A Compact Rijndael Hardware Architec-

ture with S-Box Op-timization. in Proc. ASIACRYPT (December 2000), 239–245.
M. Mozaffari-Kermaniand AReyhani-Masoleh. August 2012. Efficient and High-Performance Parallel Hard-

ware Architec-tures for the AES-GCM. IEEE Trans. Comput. 61, 8 (August 2012), 1165–1178.
C. Lin Chuang C. Hsing Wang and C. Wen Wu. April 2010. An Efficient Multimode Multiplier Supporting

AES and Fun-damental Operations of Public-Key Cryptosystems. IEEE Trans. Very Large Scale Integr.
(VLSI) Syst. 18, 4 (April 2010), 553–563.

D. Canright. 2005. A Very Compact Rijnael S-Box. (2005).
V. Fischer and M. Drutarovsky. May 2001. Two methods of Rijndael implementation in reconfigurable hard-

ware. in Proc. CHES 2001 (May 2001), 77C92.
R. C. Gonzalez and R. E. Woods. Digital Image Processing. Englewood Cliffs, NJ, USA: Prentice-Hall, 68C99.
T. Good and M. Benaissa. December 2012. 692-nW Advanced Encryption Standard (AES) on a 0.13-um

CMOS. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 18, 12 (December 2012), 1753–1757.
A. Hodjat and I. Verbauwhede. April 2006. Area-Throughput Trade-Offs for Fully Pipelined 30 to 70 Gbits/s

AES processors. IEEE Trans. Comput. 55, 4 (April 2006), 366–372.
E. Oswald J. Wolkerstorfer and M. Lamberger. December 2000. An ASIC implementation of the AES S-

boxes. in proc. ASICRYPT (December 2000), 239–245.
O. A. Mohamed K. Stevens. 2005. Single-Chip FPGA Implementation of a Pipelined, Memory-Based AES.

Canadian Conference on Electrical and Computer Engineering (2005), 1296–1299.
A. K. Nandi M. M. Wong, M. L. D. Wong and I. Hijazin. Jun. 2012. Construction of Optimum Composite

Field Architecture for Compact High-Throughput AES S-Boxes. IEEE Trans. Very Large Scale Integr.
(VLSI) Syst. 20, 6 (Jun. 2012), 1151–1155.

M. McLoone and J. V. McCanny. September 2001. Rijndael FPGA implementation utilizing look-up tables.
IEEE Workshop on Signal Processing Systems (September 2001), 349C360.

E. NC Mui. 2007. Practical Implementation of Rijndael S-Box Using Combina-tional Logic. (2007).
B. Preneeland N. Mentens, L. Batinan and I. Verbauwhede. 2005. A Systematic Evaluation of Compact

Hardware Implementa-tion for the Rijndael S-Box. in Proc. Topics Cryptology (CT-RSA) 3376 (2005),
323–333. DOI:http://dx.doi.org/10.1007/978-3-540-30574-3 22

C. Paar. 1994. Efficient VLSI architecture for bit-parallel computations in Galois field. Ph.D. dissertation,
Institute for Experimental Mathematics (1994).

V. Rijmen. 2000. Efficient Implementation of the Rijndael S-box. (2000). http://ftp.comms.scitech.susx.ac.uk/
fft/crypto/rijndael-sbox.pdf

M. Chih Chen S. Fu Hsiao and C. Shin Tu. March 2006. Memory-Free Low-Cost Designs of Advanced En-
cryption Standard Using Common Subexpression Elimination for Sub-functions in Transformations.
IEEE Trans. Circuits Syst. I, Reg. Papers 53, 3 (March 2006), 615 – 626.

N. Sklavos and O. Koufopavlou. December 2012. Architectures and VLSI Implementations of the AES-
Proposal Rijndael. IEEE Trans. Comput. 51, 12 (December 2012), 1454–1459.

W. Suntiamorntut and W. Wittayapanpracha. March 2012. The Study of AES Encryption for Wireless FPGA
Node. International Journal of Communications in Information Sci-ence and Management Engineering
12, 3 (March 2012), 40–46.

Y. Wang and Y Ha. January 2013. FPGA-Based 40.9-Gbits/s Masked AES with Area Optimiza-tion for Stor-
age Area Network. IEEE Trans. Circuits Syst. II. Exp. Briefs 60, 1 (January 2013), 36–40.

X. Yang and J. Andrian. July 2014. A High Performance On-Chip Bus (MSBUS) Design and Verification.
IEEE Trans. Very Large Scale Integr. (VLSI) Syst. (TVLSI) 23, 7 (July 2014), 1350–1354.

X. Yang and W. Wen. in press 2017. Design of A Pre-Scheduled Data Bus (DBUS) for Advanced Encryption
Standard (AES) Encrypted System-on-Chips (SoCs). The 22nd Asia and South Pacific Design Automa-
tion Conference. (ASP-DAC 2017).

X. Zhang and K.K. Parhi. October 2006. On the optimum constructions of composite field for the AES algo-
rithm. IEEE Trans. Circuits Syst. II. Exp. Briefs 53, 10 (October 2006), 1153–1157.

X. Zhang and K.K. Parhi. September 2004. High-Speed VLSI Architecture for the AES Algorithm. IEEE
Trans. Very Large Scale Integr. (VLSI) Syst. 12, 9 (September 2004), 957–967.

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.

