

A COMPARATIVE ANALYSIS OF ROOTKIT DETECTION TECHNIQUES

by

THOMAS MARTIN ARNOLD, B.S.

THESIS

Presented to the Faculty of

The University of Houston Clear Lake

In Partial Fulfillment

of the requirements

for the Degree

MASTER OF SCIENCE

THE UNIVERSITY OF HOUSTON-CLEAR LAKE

May, 2011

A COMPARATIVE ANALYSIS OF ROOTKIT DETECTION TECHNIQUES

by

THOMAS MARTIN ARNOLD

APPROVED BY

T. Andrew Yang, Ph.D., Chair

Sharon Hall, Ph.D., Committee Member

Sadegh Davari, Ph.D., Committee Member

Dennis M. Casserly, Ph.D., Associate Dean

Zbigniew J. Czajkiewicz, Ph.D., Dean

DEDICATION

I would like to dedicate this thesis to my family and friends for their constant

love, support, and patience throughout the process of completing my

graduate degree.

ACKNOWLEDGEMENTS

I would like to thank Larissa, Jonah, and Wesley for their love and patience

as I worked many nights and weekends to complete my Computer Science

graduate degree while working full-time.

I also want to thank Dr. T. Andrew Yang for being agreeing to be my thesis

committee chair and for providing constant guidance and advice throughout

the process of developing the thesis, performing the research, and

presenting the results. I would also like to greatly thank Dr. Sadegh Davari

and Dr. Sharon Perkins-Hall for serving on my thesis committee and for

providing feedback during the past year. They are all fantastic professors

and have directly provided me with a solid Computer Science education here

at The University of Houston – Clear Lake.

 iii

ABSTRACT

A COMPARATIVE ANALYSIS OF ROOTKIT DETECTION TECHNIQUES

Thomas Arnold, M.S.
The University of Houston, Clear Lake, 2011

Thesis Chair: Dr. T. Andrew Yang, Ph.D.

A rootkit is a type of malware that is designed to gain administrator-level

control over a computer system while hiding itself from the user and the

operating system, by compromising the communication channels within the

operating system. A well-designed rootkit can hide files, data, processes,

and network ports, and can typically survive a system restart. The effect of

this stealthy design allows the rootkit to perform malicious activities such as

keystroke logging or give a remote attacker control of the infected system.

Even though current rootkits are extremely stealthy, there still exist a

number of techniques that have been developed to detect their presence.

These techniques include signature-based detection, heuristic or behavior-

based detection, host integrity monitoring, and network-based detection.

This thesis will compare the operation of different types of detection methods

against several of the most common rootkits that are currently affecting

Windows-based systems.

 iv

TABLE OF CONTENTS

ABSTRACT .. iii

1.0 Introduction ... 1

1.1 Research Objectives ... 3

1.2 Related Work .. 4

1.3 Potential Benefits ... 5

1.4 Thesis Outline ... 5

2.0 Survey of Rootkit Techniques ... 7

2.1 File Masquerading .. 7

2.2 Hooking .. 8

2.3 DKOM... 9

2.4 Routine Patching .. 11

2.5 Filter Drivers ... 11

2.6 Hardware-Based .. 12

3.0 Survey of Rootkit Detection Techniques ... 13

3.1 Signature-Based .. 13

3.2 File Integrity Monitoring .. 14

3.3 Hooking Detection ... 14

3.4 Cross-View Analysis ... 15

3.5 Network-Based Detection .. 16

3.6 Heuristics-Based Detection.. 16

4.0 Research Methodology .. 18

4.1 Forensic Analysis ... 18

4.2 System Scanning Procedure .. 20

4.3 Network Scanning Procedure ... 20

5.0 Description of Rootkits used in Research 23

5.1 Rustock .. 23

5.2 TDL3 .. 24

5.3 Black Energy ... 25

5.4 Zeus/Zbot ... 27

6.0 Description of Rootkit Detectors used in Research 30

7.0 Experimental Results .. 64

7.1 System Performance and Forensic Analysis 64

7.1.1 Filesystem/Registry Modifications ... 65

7.1.2 Processor Utilization ... 66

7.1.3 Network Utilization ... 71

7.2 Anti-Rootkit System Scans .. 77

7.3 Network-Based Detection .. 89

8.0 Conclusions ... 98

8.1 Future Research .. 99

REFERENCES .. 100

 v

LIST OF FIGURES

Figure 1. Windows OS Architecture [41] ... 1

Figure 2. Windows OS Memory Protection Rings [12]................................ 2

Figure 3. Potential Hooking Locations in Windows [37] 9

Figure 4. DKOM EPROCESS example .. 10

Figure 5. Windows Device Driver Stack ... 12

Figure 6. Black Energy Use of Spare SSDT .. 26

Figure 7. Zeus/Zbot login form injection [34] .. 29

Figure 8. Antiy Atool ... 33

Figure 9. Avast! Antivirus .. 34

Figure 10. AVZ Antivirus ... 35

Figure 11. CMC Codewalker ... 36

Figure 12. ESET SysInspector .. 38

Figure 13. F-Secure Internet Security ... 39

Figure 14. GMER rootkit detector ... 41

Figure 15. Helios .. 42

Figure 16. HiddenFinder .. 43

Figure 17. IceSword ... 44

Figure 18. Kernel Detective ... 46

Figure 19. K X-ray.. 47

Figure 20. Kaspersky Internet Security ... 48

Figure 21. Malwarebytes Anti-Malware .. 50

Figure 22. McAfee Rootkit Detective ... 51

Figure 23. Microsoft Security Essentials .. 52

Figure 24. Panda Internet Security ... 53

Figure 25. Rootkit Revealer ... 54

Figure 26. Rootkit Unhooker .. 55

Figure 27. RootRepeal .. 56

Figure 28. Sophos Anti-Rootkit .. 57

Figure 29. Spybot Search & Destroy ... 58

Figure 30. Moosoft The Cleaner ... 60

Figure 31. Trend Micro Rootkit Buster ... 61

Figure 32. VBA32 ... 62

Figure 33. XueTr Diagnostic Tool .. 63

Figure 34. Processor Utilization for an Uninfected Machine 67

Figure 35. Processor Utilization for a TDL3-infected Machine.................... 68

Figure 36. Processor Utilization for a Rustock-infected Machine 69

Figure 37. Processor Utilization for Black Energy-infected Machine 70

Figure 38. Processor Utilization for a Zeus-infected Machine 71

Figure 39. Outbound Network Traffic for a TDL3-infected Machine 73

Figure 40. Outbound Network Traffic for a Rustock-infected Machine 74

Figure 41. Network Utilization for a Black Energy-infected Machine 75

Figure 42. Network Utilization for a Zeus-infected Machine 76

Figure 43. Microsoft Security Essentials Detection of TDL3 80

Figure 44. MBAM Detection of Rustock Driver .. 82

Figure 45. Black Energy Detection by Rootkit Unhooker 84

Figure 46. Clean System Netstat Output ... 90

 vi

Figure 47. Clean System Nmap Port Scan ... 90

Figure 48. Hacker Defender Netstat Output ... 91

Figure 49. Hacker Defender Nmap Port Scan ... 92

Figure 50. TDL3 Netstat Output ... 93

Figure 51. TDL3 Nmap Port Scan ... 93

Figure 52. Rustock Netstat Output ... 94

Figure 53. Rustock Nmap Port Scan .. 95

Figure 54. Black Energy Netstat Output .. 96

Figure 55. Black Energy Nmap Port Scan .. 96

Figure 56. Zeus Netstat Output .. 97

Figure 57. Zeus Nmap Port Scan .. 97

 vii

LIST OF TABLES

Table 1. Anti-Rootkit Software Characteristics 32

Table 2. Nominal (Clean) Anti-Rootkit Scan Results 78

Table 3. TDL3 Anti-Rootkit Scan Results ... 79

Table 4. Rustock Anti-Rootkit Scan Results .. 81

Table 5. Black Energy Anti-Rootkit Scans .. 83

Table 6. Zeus/Zbot Anti-Rootkit Scans .. 85

Table 7. Overall Ranking of ARK Tools .. 87

1

1.0 Introduction

The Windows Operating System (OS), like many modern operating systems,

is designed as a layered architecture. Figure 1 shows how the users and

applications are shielded from the hardware details by a number of software

layers in the Windows OS. The layering provides a high level of portability

and extensibility, but at the same time creates a number of opportunities for

attackers to compromise the system. If one of the communication paths

between the layers is controlled by a malicious user, the attacker can

perform activities such as keystroke logging, or become a member of a

botnet that sends spam emails or performs Denial of Service attacks, and not

be detected by the user or the OS. Rootkits focus on these communication

paths and interfaces to conceal their presence on the OS.

Figure 1. Windows OS Architecture [41]

The Intel IA32 and IA64 architectures provide several di

memory protection, often known as “rings”

numbered 0 through 3, with Ring 0 representing the high

and Ring 3 representing the lowest. Rings 1 and 2 represent privilege levels

that could be used by device drivers and user programs with I/O access

permissions, respectively. The idea is that system code and data can be

protected from being overwritten by a program running at a lower privilege

level. Windows does not take advantage of all 4 levels of protection, instead

focusing the OS operation only in Ring 0 (Kernel mode) and Ring 3 (User

mode). This is an artifact of previous hard

NT was designed to support, such as Compaq Alpha and Silicon Graphics

MIPS which implement

3 users are limited to using the Application Programming Interface (API) to

interface with the OS kernel, and Ring 0 users can interface directly with the

memory and hardware.

Figure 2. Windows OS Memory Protection Rings

The Intel IA32 and IA64 architectures provide several different levels of

memory protection, often known as “rings”, shown in Figure 2. The rings are

numbered 0 through 3, with Ring 0 representing the highest privilege level

and Ring 3 representing the lowest. Rings 1 and 2 represent privilege levels

that could be used by device drivers and user programs with I/O access

permissions, respectively. The idea is that system code and data can be

being overwritten by a program running at a lower privilege

level. Windows does not take advantage of all 4 levels of protection, instead

focusing the OS operation only in Ring 0 (Kernel mode) and Ring 3 (User

mode). This is an artifact of previous hardware architectures that Windows

NT was designed to support, such as Compaq Alpha and Silicon Graphics

MIPS which implemented only two privilege levels [39]. At a high level, Ring

3 users are limited to using the Application Programming Interface (API) to

interface with the OS kernel, and Ring 0 users can interface directly with the

memory and hardware.

. Windows OS Memory Protection Rings

2

fferent levels of

. The rings are

est privilege level

and Ring 3 representing the lowest. Rings 1 and 2 represent privilege levels

that could be used by device drivers and user programs with I/O access

permissions, respectively. The idea is that system code and data can be

being overwritten by a program running at a lower privilege

level. Windows does not take advantage of all 4 levels of protection, instead

focusing the OS operation only in Ring 0 (Kernel mode) and Ring 3 (User

ware architectures that Windows

NT was designed to support, such as Compaq Alpha and Silicon Graphics

. At a high level, Ring

3 users are limited to using the Application Programming Interface (API) to

interface with the OS kernel, and Ring 0 users can interface directly with the

. Windows OS Memory Protection Rings [12]

3

Typically rootkit authors gain Ring 0 status by implementing the rootkit as a

Kernel Mode Driver (KMD) [18]. The implications for having Ring 0 access

are extremely serious. As described earlier, a kernel mode rootkit can

interface directly with the OS internal structure, performing any number of

malicious activities and hiding itself from the users and applications at the

same time.

In spite of the serious threat posed by kernel mode rootkits, they were only

estimated to occur in approximately 7% of all reported malware infections as

of January 2010 [45]. However, the impact is still fairly large in terms of

malicious activity. For example, in the second half of 2009, Microsoft

estimated that the botnet enabled by the W32/Rustock rootkit was

responsible for 39.7% of the over 400 billion spam emails that were detected

by their servers [8].

1.1 Research Objectives

The goal of this thesis is to compare different types of detection techniques

and their associated tools against several of the most common Windows-

based rootkits that are currently infecting computers. As part of the thesis

research, a detailed understanding of modern rootkit designs and detection

techniques, as well as Windows networking internals will be gained. Specific

outcomes from this proposed research will include detailed analysis and

comparisons of representative rootkit detection techniques, including their

respective strengths, weaknesses, performance/overhead, and ease of

deployment. Both theoretical analysis and empirical evaluations will be

4

performed. Additionally, forensic analysis of several different types of

modern rootkits will be performed.

1.2 Related Work

Anti-Virus Comparatives [2] is an independent organization that performs

regular comparison testing of Anti-Virus software. Their testing methodology

is very thorough, as they use the latest copies of almost all available Anti-

Virus products against a representative sample of currently-active malware.

However, rootkits and rootkit detectors are not the focus of this analysis, so

there is an opportunity for this thesis to provide valuable information to the

community.

Yegulalp [48] provided a good functional description and comparison of

several of the recently-developed rootkit detection tools, but did not perform

any methodical testing of these software packages against a variety of

current rootkits.

NT Internals [28] performed a fairly thorough testing of almost all available

rootkit detectors, but did not include any of the modern rootkits such as

Rustock, Zeus, or TDL3/Alureon in the test set. This is significant, because

many of the current rootkits have significantly evolved to use different

techniques than previous versions, and are actively subverting many of the

detectors that are available. The current detection technology should easily

be able to find rootkits from this outdated test set, so the relevancy of the

results is questionable.

5

Finally, none of the AV comparison tests that have been performed on

rootkits have attempted to compare which techniques appear to be most

successful, which is the focus of this thesis.

1.3 Potential Benefits

The development of rootkits and rootkit detectors is a constantly

changing landscape, and it is important to have the most recent information

available when making a decision on how best to protect or clean a

computing system. The research in this thesis will help bring to light the fact

that many formerly effective solutions have not kept up with the pace of

modern rootkit development, and should no longer be used. Additionally, the

characteristics of the rootkit detectors will be analyzed to determine if there

is a particular technique or combination of techniques that is able to detect

rootkits more effectively.

Additionally, a set of computer system and malware forensic analysis

skills will be developed during the course of the research. This thesis will

document how debugging tools and other analysis tools can be used in the

analysis of recently-developed rootkits.

1.4 Thesis Outline

The rest of the thesis is structured as follows: First, in sections 2 and 3, an

overview of rootkit design techniques and detection methods is given. In

section 4, the research methodology is described. In section 5, details of the

specific rootkits used in the research will be provided. In section 6, a

description of each of the rootkit detection software will be given. In section

6

7, the results of the experiments will be provided, as well as a discussion

and analysis of the results. In section 8, conclusions will be provided,

including proposed future research.

7

2.0 Survey of Rootkit Techniques

This section will provide an overview of several rootkit design techniques that

have evolved over the years. The design and detection of rootkits can best

be described as an “arms race”, with the rootkit authors and the security

community engaging in a constant process of one-upmanship. The initial

rootkits focused on UNIX-based systems, and used fairly primitive designs

that replaced system files with malicious versions, and were easily detected

by file system scanners. Over time, the rootkit techniques have evolved into

using undocumented operating system data structures and even extremely

hardware-dependent systems that operate independently of the OS and are

extremely difficult to detect.

2.1 File Masquerading

One of the earliest rootkit techniques was to replace system files with

malicious versions that shared the same name and services as the original.

This technique is known as file masquerading [41]. For example, a system

file that provides a service or function to list files and folders (eg., Windows

“dir” command) could be replaced with a version that filters out all of the

malicious files, effectively hiding the malware from the system. However,

this technique is easily detected by file system integrity tools such as

Tripwire [15], which compares baseline “clean” versions of the system files

against the current file system using a Cyclic Redundancy Check (CRC). If

any discrepancies are found, the file system has likely been compromised

and cannot be trusted.

8

2.2 Hooking

The next step in the evolution of rootkits was to redirect system calls to

malicious code, a technique known as “hooking” [41]. Hooking is when a

given pointer to a given resource or service is redirected to a different object.

For example, instead of completely replacing the file containing the “dir”

command as described in the previous section, the system call can be

redirected to a custom “dir” command in memory space that filters out the

malicious files and folders.

Basically, hooking achieves the same effect as file masquerading, but is more

difficult to detect, since the system files on disk are not altered. This type of

technique cannot be detected by file integrity checkers as described in the

previous section, so in order to counter this technique, memory scanners

such as Rootkit Unhooker [13] were developed.

Figure 3 shows a typical path of a Windows-based function call starting at the

user application and ending in the physical hardware. There are several

different locations along the way that can be hooked to perform both

malicious and legitimate activities. These locations include userland hooks in

the Import Address Tables (IAT), the Interrupt Descriptor Table (IDT), the

System Service Dispatch Table (SSDT), and device drivers via I/O Request

Packets [37]. These tables maintain memory addresses that point to various

functions and interrupt request handlers, which can be modified to point to

malicious programs that are resident in memory.

9

Figure 3. Potential Hooking Locations in Windows [37]

2.3 DKOM

The third generation of rootkits used technique known as Direct Kernel

Object Manipulation (DKOM). DKOM can manipulate kernel data structures

10

to hide processes, change privileges, etc. The first known rootkit to

perform DKOM was the FU rootkit, which modified the EPROCESS doubly

linked list in Windows to “hide” the rootkit processes. This technique took

advantage of the fact that there are two separate lists for processes and

threads in Windows. As shown in Figure 4, by modifying the FLINK and

BLINK pointers in the EPROCESS list (and leaving the thread list alone), the

rootkit was able to remove the offending process. The associated malicious

threads are then allowed to continue being executed by the CPU scheduler

[37]. DKOM requires a lot of reverse engineering and a detailed knowledge

of OS internals, and can be very challenging to detect due to many

undocumented features and the proprietary nature of the Windows source

code.

Figure 4. DKOM EPROCESS list modification

11

2.4 Routine Patching

In this technique, the rootkit author modifies the source code of a system

routine to cause the execution path to jump to malicious code which is

resident either in memory or on disk. Some of the early UNIX-based rootkits

completely replaced the system file with a modified version using the same

name [41]. Modern Windows-based rootkits may embed a JMP instruction

within the system binary to redirect the execution path [18]. This can be

performed against the system binaries stored in the OS file system, or even

against executing code loaded in memory. If the modification was performed

on the file system, this can be easily detected by file integrity monitoring

systems. Run-time modification can be detected by applications such as

Kernel Path Protection, which is provided by the 64-bit versions of Windows.

2.5 Filter Drivers

The Windows driver stack architecture was designed in a layered manner, so

that third party hardware manufacturers can insert their drivers within

already existing layers and utilize existing functionality provided by the

Windows OS [41]. This feature also creates yet another opportunity for

rootkit authors to inject their malicious code to interrupt the flow of I/O

Request Packets and perform activities such as keystroke logging or filtering

the results that are returned to anti-malware applications. Rootkit authors

can perform hooking of drivers, patch driver routines, or even create an

entirely new driver and insert it into a driver stack. Figure 5 shows a

representative example of a Windows Driver stack.

12

Figure 5. Windows Device Driver Stack

2.6 Hardware-Based

The fourth and final type of rootkit operates independently of the OS, but is

extremely hardware dependent. These rootkits typically use hardware

virtualization and chipset exploits to operate in the BIOS or PCI expansion

cards [41]. At this time the hardware-specific rootkits are not very prevalent

in the wild, and are more “proof of concept” techniques. Techniques to

detect these types of rootkits are likewise very sparse [41].

13

3.0 Survey of Rootkit Detection Techniques

There exist a number of different methods to detect rootkits, including

signature-based detection, file integrity monitoring, cross-view analysis,

hooking detection, heuristics (behavior)-based detection, and network-based

detection. Most of the rootkit detectors employ several of these techniques,

in order to provide the widest range of capabilities and increase their chances

of success. In this section each of these techniques will be briefly described,

and include some examples of current software that uses them. One caveat

for all of the techniques described in this section is that a kernel mode rootkit

can always alter the results that are reported to the anti-rootkit software,

and the lack of a reported detection is not always indicative of a clean

system. However, in practice, many rootkit authors do not always include

anti-detection or anti-forensics code in the malware, due to large time and

effort required to thoroughly address all the potential detection methods

[22].

3.1 Signature-Based

The most common method for detecting rootkits (and malware in general) is

the signature-based technique [22]. Once a sample of malware has been

obtained, the byte pattern of the software is heavily analyzed to identify a

unique fingerprint that will distinguish this specific malware from legitimate

software, as well as other types of malicious software. The fingerprint

“signature” will then be integrated into a database that can be used by

detection software when performing system scanning. If a scanned piece of

software has a pattern that matches an entry in the malware database, it is

14

extremely likely that it is malicious and should be flagged to the system

and the user. While this technique has been successfully used for over

twenty years, the main weakness is that it cannot detect new types of

malware, until a sample can be analyzed to extract a signature. Popular

programs that employ signature-based detection include the Microsoft

Malicious Software Removal Tool [7], Kaspersky Internet Security [5], and

Malware Bytes Anti-Malware [6], and many others.

3.2 File Integrity Monitoring

File integrity monitoring is a detection technique that was first employed on

UNIX systems by Tripwire in the early 1990s [15]. The method calculates

cryptographic hashes for critical, unchanging operating system files and

compares them to known values that are stored in a database. Typically this

database is generated against a clean version of the operating system, so

when a mismatch is detected, a file has been altered (likely by malicious

software). This technique works well against the file masquerading rootkit

design as described in Section 2.1.1, but rootkit authors quickly adapted to

use hooking techniques instead. As a result, file integrity monitoring is not

widely employed as a method of detection for modern anti-rootkit systems.

3.3 Hooking Detection

Detection of rootkit hooking is a fairly straightforward process. The SSDT,

IAT, and IDT each has a set of function pointers for each service or interrupt,

which are all within a specific range in memory. When the rootkit modifies a

hook to point to a malicious service or interrupt routine, the memory location

15

almost invariably is located outside this specific range of the “clean”

system, and is easily detected by anti-rootkit software. Inline function and

I/O Request Packet (IRP) hooking is detected in essentially the same

manner. While hooking is easily detected, it should be noted that a kernel-

mode rootkit can alter the results of the detection software and make it

appear that everything is nominal. Hooking detection is thoroughly provided

in tools such as Rootkit Unhooker [13] and GMER [24].

3.4 Cross-View Analysis

The next detection technique to be discussed is known as cross-view

analysis. It involves looking at the system from the high level “user”, or API

view, and comparing it to the actual low level hardware view. The idea is

that a rootkit will not be able to hide itself when the raw hardware is

scanned. If a particular file or registry key is absent from the API view but is

present in the hardware view, it is highly likely that a rootkit is attempting to

hide itself from the system. This technique was first used in SysInternals’

RootkitRevealer software [38], and is now used in many other detectors such

as IceSword [4].

Detection of DKOM is more challenging than the signature-based techniques

or hook detection as described earlier in Section 2.1.3, because most of the

time the OS data structures that have been modified are not very well

documented by the vendor to begin with (usually for proprietary reasons).

The typical method to detect DKOM is to look for other locations in the OS

kernel where the same data may be stored, and perform a comparison. If

16

any discrepancies are found, it is likely that a system has been modified by

a rootkit. Rootkit detectors that provide DKOM detection include Rootkit

Unhooker [13] and GMER [24], as well as several others.

3.5 Network-Based Detection

A novel technique developed by Symantec researchers to detect the presence

of a rootkit is to analyze the network traffic of the system [44]. In [44], Szor

proposes to have the system periodically send a snapshot of the network

traffic and open ports to a trusted gateway for analysis. The gateway will

compare this data with its “external” view of the system’s network activity.

If there are ports that are not being reported as open, or traffic that is not

being reported by the host system, but is observed by the gateway, then the

host system is likely infected with a rootkit. At this time, this method of

detection appears to not be used by Symantec in any of their products. It is

an elegant solution that has a lot of potential to uncover “zero day” rootkits

that would not otherwise be detected by the traditional signature-based

techniques. It should be noted that if the rootkit author communicates via

covert channel techniques, this technique would not be as effective.

3.6 Heuristics-Based Detection

Heuristics-Based detection of malware attempts to classify malicious behavior

according to certain pre-determined rules. For example, an application that

attempts to modify kernel-data structures, decrypt instructions, or send a

large amount of email in a short period of time likely has malicious intent.

One significant advantage of this detection method is that “zero-day”

17

variants of malware can be detected, which is the weakness of the

signature-based detection method. However, the big drawback to the

heuristics-based method is that more false positives can be generated, thus

the definition of the ruleset must be developed very carefully. Several

malware detectors in this study utilize heuristics-based detection algorithms,

including Malwarebytes Anti-Malware and F-Secure Internet Security.

18

4.0 Research Methodology

All thesis research experiments were performed in the Distributed Computing

Systems Laboratory (DCSL) at the University of Houston – Clear Lake

campus. The workstations used at the DCSL provided the ability to perform

simultaneous operation of several different families of malware in an isolated

environment. Another benefit of utilizing the DCSL workstations is that the

malware can operate in a real environment, as certain types of malware will

not function in a virtualized system.

In order to provide a common baseline system, Windows XP Service Pack 3

was installed on all the workstations. The Partimage Is Not Ghost (PING)

[10] application was used to ensure a consistent disk image was used across

all machines, as opposed to manually installing Windows XP and the

associated Service Packs. Also, to ensure that the disk image was not

tainted, Derek’s Boot and Nuke [27] was used to zero out the hard drive

sectors prior to installation of the OS image.

The workstations in the DCSL have identical specifications, which include an

Intel Pentium 4 3GHz processor, 1 GB of Random Access Memory, and a 112

GB portable hard drive.

4.1 Forensic Analysis

In order to analyze the effect of a given rootkit on the system, a number of

forensic experiments were performed. First, a comparison was performed of

the filesystem and Windows registry before and after infection to evaluate

modifications by the associated rootkit. Also, CPU utilization measurements,

19

as well as network utilization data was collected for a long duration

(approximately 48 hours). Finally, once a system was infected with a rootkit,

a kernel mode debugging session was performed using either the Microsoft

Kernel Debugger (KD.exe) or Windbg.exe to analyze the changes to internal

Windows OS structures.

The changes to the filesystem and Windows registry were evaluated by using

several different software applications. First, the hard disk was wiped using

DBAN and the Windows OS was installed using PING as described in Section

4.0. Once the OS was installed, a live CD (Bart’s Preinstalled Environment,

or BartPE) [31] was used to boot Windows and view the filesystem from an

external perspective. Even with a rootkit installed, since the infected OS is

not running, any modifications to the filesystem or registry will be apparent.

After the BartPE successfully loaded Windows, the contents of the filesystem

(directory and filenames only) were dumped to a text file. Additionally, the

Windows registry was saved for later comparison. Next, the system was

rebooted and the rootkit was installed. After the rootkit was verified to be

installed, the filesystem and Windows registry were copied again using

another BartPE session. In order to compare the filesystem changes,

Windiff.exe [16] was used to highlight any modifications that occurred after

the rootkit infection. Windows registry changes were evaluated using

AlienRegistryViewer [1] to import the individual registry files and save them

as a single .reg file, and RegSnap [11] was used to perform the actual

comparison.

20

4.2 System Scanning Procedure

In order to verify that the rootkit was installed, a kernel mode debugging

session was performed, and certain behaviors such as characteristic TCP/IP

traffic and web browser redirects had to also be observed. Once the portable

DCSL drive was verified to be infected with the rootkit, each of the Anti-

rootkit software packages was individually installed and scans were

performed on the infected drive. If the rootkit was detected, and the ARK

software provided an option to remove the rootkit, then it was attempted.

Removal was confirmed by subsequent scans of corroborating tools, and

verifying the lack of certain symptoms such as TCP connections and URL

redirects. If removal was attempted, then the drive was subsequently wiped

with DBAN and the OS installation/infection/scan process was continued with

the remaining rootkit detectors.

4.3 Network Scanning Procedure

In this experiment, two independent systems were used. Both machines

used Windows XP Service Pack 3 installed on portable drives in the

Distributed Computing Systems Laboratory, as described Section 4.0. One of

the machines is infected with a rootkit from the thesis research (TDL3,

Rustock Black Energy, or Zeus), and the other machine is used as a clean

system to perform the external network port scans. To demonstrate the

efficacy of the network-based detection technique, a rootkit that is known to

hide network ports (Hacker Defender) was used as a control. Additionally,

the technique was performed against an uninfected machine to provide a

clean baseline.

21

The port scanning software used by the external host in the research was

Network Mapper (Nmap), a freely available security scanner [33]. Nmap has

the ability to perform many scanning functions against remote network

hosts, including determining the status of TCP and UDP ports, the services

that are attached to open ports, the remote host’s operating system, as well

as many other functions. For the purposes of this experiment, the port

scanning function will be the primary use of Nmap. One limitation of Nmap is

that it is only able to detect open or listening ports, due to the 3-way

handshake of a TCP connection. Ports that are already connected cannot be

detected by Nmap.

The network software used by the internal (infected) host was Netstat.

Netstat [9] is a network statistics application that is automatically included

with all versions of Windows, as well as many other operating systems such

as UNIX, Linux, and Macintosh OS X. Netstat displays all incoming and

outgoing network connections, and includes information such as the

connection state and the local and foreign IP addresses associated with each

connection.

In order to identify the potential presence of a rootkit, the output of an Nmap

scan against the target infected machine is compared to the output from

Netstat running on the infected machine. Netstat is a command-line

application, so the output can be directed to a file using the “>>” operator in

the Windows command line. In order to perform a thorough scan of all

ports on the remote host, Nmap enumerated through all 65535 potentially

22

open TCP and UDP ports. In this set of port scans, Nmap determines all

open or listening TCP/UDP ports on the target host, and if possible Nmap also

determines the service associated with each connection. This output is also

saved in a log file. The log file from Netstat is compared with Nmap to look

for discrepancies. If there are ports that are included in the Nmap output

and are not visible in the Netstat output, then it is highly likely that a rootkit

is hiding its network connections.

Procedure

1. On the local (infected) machine, open a command line window and

determine the local IP address by executing the ipconfig command.

2. Next, again on the local (infected) machine, open a command line

window and execute the netstat -a -n >> [rootkit]_netstat.txt to

enumerate all active TCP and UDP connections and direct the output to

a log file, where [rootkit] is replaced by the name of the rootkit that

the machine has been infected with (eg., TDL3).

3. On remote (clean) machine, open the Zenmap application, which is the

Windows-based GUI for Nmap. In the “Target” textbox, enter the IP

address of the infected machine that was obtained in Step 1. Under

profile, select Intense Scan, and click the “Scan” button.

Manually compare the output of Nmap from the remote scan against the

Netstat output from the local scans. Look for any discrepancies, in particular

look for additional ports in Nmap that were not reported in Netstat.

23

5.0 Description of Rootkits used in Research

5.1 Rustock

The Rustock rootkit/botnet has been in existence since the 2006 timeframe,

and has been in a constant state of evolution. The primary focus of the

botnet is to distribute large quantities of spam email, although there are

some reports that it has also been used to perform Distributed Denial of

Service attacks [43]. As of July 2010, the botnet was responsible for

approximately 50% of the total spam production, at a rate of approximately

30 billion spam messages a day [36]. There have been recent reports that

the rate of spam production has slowed dramatically with the shutdown of

Spamit.com, a large affiliate that specializes in pharmaceutical spam [26]. It

is not clear whether or not this slowdown in production is simply a temporary

phenomenon.

Rustock has undergone a number of major design evolutions over the years.

Initially, the rootkit focused on performing System Service Dispatch Table

(SSDT) hooking to hide the driver and associated registry keys. More recent

versions has moved away from SSDT hooking (due to the ease of detection),

and instead utilize a filter driver by hooking the IRP_MJ_CREATE routine in

the ntfs.sys driver, which intercepts I/O Request Packets to and from the

hard disk. Additionally, a recent update to the spambot component of

Rustock includes communication with a random Wikipedia entry to download

random phrases which can be used to evade spam email detectors [36].

24

On March 17, 2011, Microsoft announced that the Rustock botnet had

been taken offline by a combination of legal and technical strategies. This

takedown was a joint effort between Microsoft, FireEye Security, and the

University of Washington [46]. The perpetrators of the botnet have not been

apprehended, however several pieces of physical evidence, including hard

drives from Command and Control servers located in the United States were

recovered [32]. Even though the botnet has been effectively eliminated, is

very possible that the malware authors will attempt to recreate a similar

criminal enterprise in the future.

5.2 TDL3

TDL3 is the 3rd generation of “Trojan Downloader” rootkits developed by the

Dogma Millions cybercrime group [35]. The malware is used in a “Pay Per

Install” scheme, which uses distributor identification to determine how many

copies of the malware get installed on computers. The ultimate goal of the

TDL3 rootkit is to download, install, and hide malicious programs that can

perform illicit activities such as keystroke monitoring or Distributed Denial of

Service (DDoS) attacks.

The rootkit installs itself via an exploit in the Windows AddPrintProcessor API

call [3]. Basically, the malware adds itself as a new printer and as a result

gets kernel-mode driver privileges. From there, the malware performs filter

driver hooking as described in Section 2.5 and infects the hard-drive miniport

driver for atapi.sys, as well as a randomly chosen driver that is loaded at

boot-time. Also, the rootkit installs an encrypted filesystem that begins at

25

the end of the hard disk, and grows toward the beginning [3]. This way,

the filesystem is outside of the range of the Windows filesystem and

therefore is not detected via traditional scanning techniques. The TDL3

configuration files as well as the downloaded malware programs are stored in

this encrypted filesystem [40].

TDL does not perform some of the more traditional rootkit techniques such

as System Service Descriptor Table (SSDT) or Interrupt Descriptor Table

(IDT) hooking or even Direct Kernel Object Manipulation (DKOM). The

rootkit does perform I/O Request Packet (IRP) hooking to intercept and filter

IRPs that are sent and received by the hard-drive miniport driver. The IRP

hooking provides communication with the encrypted filesystem that was

described in the previous paragraph. From a user perspective, many

browser search requests to security websites are redirected to either

malicious or heavily ad-supported websites that attempt to install other types

of malware.

Overall, the TDL3 rootkit is one of the most sophisticated and actively-

developed rootkits today. It performs active blocking of many prevalent

anti-malware tools, and utilizes hiding techniques that many of the Anti-

Rootkit detectors do not look for.

5.3 Black Energy

The Black Energy Rootkit has been in existence since approximately 2007,

when it was used to perform Distributed Denial of Service (DDoS) attacks

against the country of Georgia [42]. The software was initially designed to

26

perform solely DDoS-type of attacks, but recently the rootkit has been

updated to perform many other activities, including bank fraud [25].

The most recent version of Black Energy injects code into a svchost.exe

process and also includes sophisticated methods of hiding itself from

conventional rootkit detectors. This version, known as “2.1+”, exploits the

Windows operating system System Service Descriptor Table (SSDT)

architecture [29], as shown in Figure 6.

Figure 6. Black Energy Use of Spare SSDT

The baseline Windows OS utilizes 2 SSDTs, although there are provisions

built into the OS for 4 total SSDT, thus 2 are typically unused [39]. The

primary SSDT consists of approximately 300 “system calls” to various

services for opening files, terminating processes, etc. The secondary SSDT,

known as the “shadow” SSDT, includes many system calls for the Windows

Graphical User Interface (GUI) [39]. The recent Black Energy rootkit copies

27

these two SSDTs and points to them in their respective ETHREAD objects

which are generated by the svchost.exe process [29]. These SSDT copies

include hooks in various system calls to hide the rootkit components and

control the relevant features of the OS that the author deemed necessary for

operation. Conventional rootkit detectors such as IceSword may only report

the hooking status of the primary two SSDTs, and not look for utilization of

the other SSDT slots, since they are not typically used. Therefore, if the

Anti-Rootkit (ARK) software only looks at the primary SSDTs, it may not

detect the presence of Black Energy. Some ARK tools such as GMER and

Rootkit Unhooker (and others) perform a comparison of the SSDTs which are

pointed to by the active ETHREAD objects, and if there is a miscompare, the

discrepancy is reported. This difference in ARK operation is illustrated in the

results of the ARK scans, which are included in later sections.

5.4 Zeus/Zbot

Zeus/Zbot is a family of malicious software that focuses on stealing

passwords for financial institutions, and includes several rootkit components

to provide stealth capabilities. The Zeus malware, which originated in

Russia, has been in existence since 2007 [23], and is continuously being

updated. It is one of the largest botnets in existence, affecting

approximately 75,000 computers in over 200 countries [20]. It is possible to

purchase a Zeus “bot-maker” kit on underground Internet forums, which can

be used to generate malware that is distributed to victims via drive-by

downloads or spam email campaigns. The primary goal of the Zeus malware

is to steal passwords and sensitive information for web-based financial

28

accounts, which are then used to transfer stolen money to criminals [30].

There have been a large number of recent arrests of criminals using the Zeus

malware to steal personal information, but this has not slowed down the

overall development or illicit activity associated with this malware.

A detailed analysis of the malware characteristics on a Windows-based

system is provided in [17]. The malware, which is typically installed via

drive-by download or by a user clicking on malicious links in a spam or

phishing email, performs a number of modifications to the Windows

Operating System (OS). The malware installs a copy of the main driver file,

sdra64.exe, in the Windows/system32 folder, and is subsequently hidden via

hooking Windows services. This program is then injected into the

winlogon.exe or Svchost.exe process, which allows kernel-level access to the

OS [17]. Next, the Windows/system32/lowsec folder is created, and the

local.ds and user.ds files are copied into this folder. These files store the

malware’s configuration file as well as the user’s stolen sensitive information.

Both of these files are encrypted and hidden via hooking Windows services.

A listening TCP port is also opened and associated with the injected

Winlogon.exe or Svchost.exe process, which is a likely backdoor

communication link to the botmaster. Finally, a registry entry is created to

ensure the malware is initialized upon a restart of the Windows OS.

Once installed, the malware waits until a user logs into a financial website

that is specified in the configuration file. It then injects predetermined code

into the browser to include additional textboxes for the user to enter

29

sensitive information. The configuration file can be customized based on

the user’s location and language. An example of this injection is shown in

Figure 7. The malware logs the sensitive information and transmits it to the

botmaster via encrypted network traffic.

Figure 7. Zeus/Zbot login form injection [34]

30

6.0 Description of Rootkit Detectors used in Research

In this section, a brief description of each of the Anti-Rootkit (ARK) tools is

provided, as well as a summary of the respective tool’s performance in the

rootkit scanning as described in Section 4.2. Table 1 displays an overview of

the scope and detection techniques used by each of the ARK tools included in

the research.

At a high level, the ARK tools can be divided into two groups: diagnostic

tools and malware scanners. The diagnostic tools tend to focus on reporting

the current state of various components in the operating system, such as

system call tables, loaded services, active network ports, etc. The results

usually have to be interpreted by a knowledgeable user, since it may not be

clear if there is a problem. Examples of diagnostic tools include ESET

SysInspector, Ice Sword, or XueTr. The malware scanners typically provide a

very intuitive user interface to initiate a system scan, and the results are

likewise very clear if an instance of malware is detected. Examples of

malware scanners include Kaspersky Internet Security and Malware Bytes

Anti-Malware. Some of the tools, such as GMER and Rootkit Unhooker,

incorporate both diagnostics and scanning into their operation, but most of

the programs can be included in one of these two groups.

In Table 1, the “Active” column indicates whether the application was still

being actively developed over the last calendar year. For example, Ice

Sword has not been updated since approximately 2008, so it is not

considered to be in active development any longer. The “Self Protect”

31

column indicates whether the application provides mechanisms to protect

its operation from tampering by malware. For example, F-Secure hooks

many Windows services such as NtTerminateProcess and NtTerminateThread

to prevent malware from terminating it. The “Diag” column indicates

whether the application is primarily diagnostic in nature, or more of an “on

demand” scanner. If the application provides real-time protection from

malware (always-on versus on-demand), that is indicated in the “Real-time

Protection” column. For example, Kaspersky hooks a large number of

Windows services to monitor the creation of new processes, registry keys,

network ports, etc. in an effort to identify malicious behavior. If the detector

also provides a removal capability, that is indicated in the “Removal” column.

There are also columns that show the various malware detection methods

that the application provides, including hooking, cross-view, heuristic-based,

as well as signature-based. These features were determined by analyzing

the user interface and output of the application, as well as any available

documentation provided by the developer.

32

Table 1. Anti-Rootkit Software Characteristics

33

6.1 Atool

Atool, shown in Figure 8, is a rootkit detector that is developed by Antiy Labs

in China. This application would likely be most useful as a diagnostic tool for

knowledgeable users, and the interface is not simple or intuitive enough for

use by the average user. Additionally, Atool provides insight into a number

of different areas of the Windows operating system, including running tasks,

processes, services, and drivers, as well as the state of the SSDT and file

system drivers. The current version number of Atool is 1.0021, and it has

not been updated since 2008.

Figure 8. Antiy Atool

34

6.2 Avast! Antivirus

Avast! Antivirus, shown in Figure 9, is an antivirus tool that is developed by

the Avast! Corporation. Approximately 2 years ago, the company began

incorporating some of the GMER detection algorithms into the application.

This software provides many of the “on demand” file scanning and real-time

protection features that other anti-virus programs such as Symantec and

McAfee offer, and additionally provides heuristics-based scanning to identify

newly-developed malicious programs. The installation and use are both fairly

straightforward, and there are many options to customize the level of system

scanning and heuristics. This application can be used concurrently with other

applications and there was not a noticeable performance penalty.

Figure 9. Avast! Antivirus

35

6.3 AVZ Antivirus

AVZ Antivirus, shown in Figure 10, is a free anti-malware application

developed by Oleg Zaytsev. The application utilizes several different

detection techniques, including signature-based, heuristics-based, as well as

hooking detection. AVZ does provide real-time malware protection, however

it does not appear to include any self-protection mechanisms. AVZ has not

been updated since approximately 2008, so it is possible that many of the

detection methods may not be relevant any longer.

Figure 10. AVZ Antivirus

6.4 CMC Codewalker

Codewalker, shown in Figure 11, is a system diagnostic tool developed by

CMC Infosec in Vietnam. The user interface is very similar to other tools

36

such as GMER and offers many of the same services, such as detection of

hidden processes and files, as well as user and kernel mode hooks. The

application is a standalone .exe and is very simple to install and use,

however, there are few to no options available to configure the level of

scanning and behavior. Additionally, there do not appear to be any removal

features associated with the program, so if a rootkit is detected, another

application must be used. It appears as though the tool has not been

updated since 2008, which likely will adversely affect its ability to detect new

forms of malware.

Figure 11. CMC Codewalker

37

6.5 ComboFix

Combofix is a malware detection and removal application developed by an

anonymous security professional known as “sUBs”. The inner workings of

this application are highly secretive, and there is very little information

available other than some basic user guides and tutorials. It appears that

Combofix is primarily a signature-based malware remover that is constantly

updated, and does not implement more sophisticated heuristic-based

algorithms. It does integrate rootkit-detection functionality using a GMER-

based module, which can identify hidden OS objects. There do not appear to

be any self-protection mechanisms built-in to Combofix.

6.6 ESET SysInspector

SysInspector is a diagnostic tool developed by the ESET corporation. It

provides insight into running processes, network connections, registry

entries, drivers, etc. The user interface is very cumbersome, because there

is no “Scan” button that is commonly available with most security

applications. Each of the major categories (files, drivers, services, etc.) are

assigned a color based on the most “risky” entry. For example, in Figure 12,

the Critical Files section is green because there are no risky files detected,

but the Drivers section is red because the application detected the presence

of the Black Energy driver. There is a slider bar located near the top of the

window that can be used to filter the entries based on risk level. Overall

SysInspector appears to be a useful diagnostic tool, but there appears to be

no hooking detection or removal features, so it is not recommended for use

in detecting rootkits.

38

Figure 12. ESET SysInspector

6.7 F-Secure Internet Security

F-Secure Internet Security, shown in Figure 13, is a broad security

application that provides detection of viruses, spyware and rootkits using on

demand system scanning and real-time system protection, and also provides

other features such as parental content filtering. The application is highly

configurable, and includes options to control settings for the level of heuristic

scanning. Internet Security 2011 has a free 30-day trial and there is a tiered

pricing model based on the length of the subscription for updates.

39

The rootkit detection algorithms are based on a previous F-Secure product

known as Blacklight, which was one of the more popular rootkit detectors in

the 2006 timeframe. F-Secure Internet Security uses a combination of

detection techniques, including signature-based and cross-view.

Additionally, F-Secure hooks several services in the Windows OS, in order to

provide better real-time detection as well as self protection of the F-Secure

application itself. For example, it hooks services such as NtCreateProcess,

NtCreateThread, NtRenameKey, as well as several others. By hooking these

services, F-Secure can monitor the creation or termination of processes,

threads, even network ports, and intervene if it is determined that an

application is performing a malicious activity.

Figure 13. F-Secure Internet Security

6.8 GMER

GMER is a free rootkit detector developed by Przrmyslaw Gmerek, a Polish

security researcher. This application has been consistently one of top

40

performing rootkit detectors since its initial release in the 2006-timeframe.

It is still being actively developed and updated as of this writing. Some of

the features that GMER provides include detection of hidden processes,

threads, services, files, as well as detection of several different types of code

hooks. It also provides removal and restoration options if a rootkit is

detected. Additionally, GMER has built-in protection by hooking various

Windows OS services to prevent malware from interfering with its operation.

Additionally, GMER randomly changes the name of its running process as

another method of self-protection.

The installation and operation of GMER is very straightforward. Upon loading

the application, there are several different tabs that the user can select to

perform different types of scans and view the associated output, as shown in

Figure 14. There is also an option to output all the scan results into a single

report that can be saved and viewed as a text file. One significant downfall

of using GMER is that it is extremely intrusive on the operation of the

system, and it is important to not perform any other tasks while GMER is

performing a scan. It is likely that the operating system will crash due to the

low-level nature of the scans if other tasks are attempted.

41

Figure 14. GMER rootkit detector

6.9 Helios Lite

Helios Lite, shown in Figure 15, is a free rootkit detector developed by Miel

Labs. It includes a subset of the features available in the Helios malware

detection system, and was designed to be a portable application that can be

executed from a USB drive. The primary detection algorithms utilize cross-

view techniques, but also performs some limited hooking detection as well as

heuristic-based detection. The user interface is fairly intuitive, with several

options clearly provided on the left-side of the application.

42

Figure 15. Helios

6.10 Hidden Finder

Hidden Finder, shown in Figure 16, is a diagnostic tool developed by the

WenPoint Corporation. It provides on demand scanning for hidden processes

and drivers using the cross-view technique. It does not appear to be in

active development any longer, and has not been updated since

approximately 2008.

43

Figure 16. HiddenFinder

6.11 Ice Sword

Ice Sword, Figure 17, is a diagnostic tool that was developed by an

anonymous Chinese security researcher. This was one of the top-performing

rootkit detectors in the 2006-2007 timeframe, but has not been updated

since 2008. One significant drawback is that Ice Sword only works under the

Windows XP environment, and will not even start in Vista or Windows 7. Ice

Sword provides utilities to detect hidden processes and files, as well as

several different types of code hooks. The user interface is almost identical

to Antiy Atool, given the geographic proximity of the developers, it is possible

that some collaboration occurred.

Ice Sword was also one of the first applications to include self-protection

mechanisms by hooking various Windows services, which prevent malware

from interfering or terminating its operation. Some of the services Ice Sword

44

hooks include NtCreateProcessEx, NtTerminateThread, etc to monitor for

any applications that attempt to create or terminate processes and threads,

and intervene if needed. The hooking that Ice Sword performs is not nearly

as thorough as F-Secure, for example no network services are hooked at all.

Figure 17. IceSword

6.12 Kernel Detective

Kernel Detective is a diagnostic and malware removal tool developed by the

Arab Team 4 Reverse Engineering (AT4RE), a private team of security

researchers. This application is still in active development and utilizes a

number of different techniques to identify malware, including cross-view and

hooking detection. Additionally, Kernel Detective hooks several Windows

45

services to provide self-protection from malware interfering or terminating

its operation.

The application is very straightforward to install and use. There are a

number of tabs to select different diagnostic views of the operating system,

as shown in Figure 18. The tabs include running processes and threads,

SSDT and IDT hooking, kernel modifications, and even includes a

disassemble to inspect selection regions of kernel memory. However, one

key interface component that appears to be missing is a comprehensive “one

button” scan and reporting capability, which is available in tools such as

GMER and Rootkit Unhooker. If a file is determined to be infected or if a

hook is detected, the user can attempt to restore the affected component to

the original state, or remove it entirely.

46

Figure 18. Kernel Detective

6.13 K X-ray

K X-ray is a diagnostic utility developed by an anonymous security

researcher. It does not appear to be in active development any longer, has

not been updated since approximately 2008, and only works in Windows XP.

K X-ray acts as a standalone application and is easy to install, but the user

interface leaves much to be desired. There are a number of different system

views that can be selected on the left side of the application window, and the

results are displayed on the right side of the window. The main issue with

the user interface, shown in Figure 19, is that window resizing is not

47

possible, so if file paths or names exceed the width of the window, they

are not viewable.

Figure 19. K X-ray

6.14 Kaspersky Internet Security

Kaspersky Internet Security (KIS), shown in Figure 20, is a broad anti-

malware application developed by Kaspersky Labs in Russia. It is very

similar to other Internet Security applications such as F-Secure and Panda, in

that it offers on demand system scanning as well as real-time system

protection. Its primary method of detection uses the cross-view technique,

but it also includes heuristics-based scanning to detect malicious

applications. KIS has a 30 day free trial period, but ultimately it is a

commercial application.

48

KIS hooks a large number (over 50) Windows OS services in an attempt to

provide better real-time protection as well as self-protection for the KIS

application itself. By performing these hooks KIS can monitor the creation of

process, threads, and network ports, as well as other applications attempting

to install hooks themselves.

Figure 20. Kaspersky Internet Security

6.15 Malwarebytes Anti-Malware

Malwarebytes Anti-Malware (MBAM), shown in Figure 21, is a free anti-

malware application developed by the Malwarebytes corporation, a private

security firm located in the United States. Like some of the other anti-

malware tools, MBAM provides on demand scanning as well as real-time

49

protection. The primary methods of detection uses the signature-based

and cross-view techniques, but MBAM also provides heuristics-based

scanning using a proprietary algorithm. The installation is very

straightforward, a Windows-based installer walks the user through the

process and the directions are intuitive. The user interface is also fairly

intuitive, with a tabbed-interface clearly providing commands to update the

signature definitions and perform different levels of system scanning.

One area that differentiates MBAM from applications such as F-Secure and

Kaspersky Internet Security is the lack of Windows service hooking. This

means that MBAM does not have any self-protection mechanism built-in, and

nor any real-time protection. A commercial version of MBAM can be

purchased that includes these features.

50

Figure 21. Malwarebytes Anti-Malware

6.16 McAfee Rootkit Detective

Rootkit Detective is a standalone rootkit scanning application developed by

the McAfee Corporation. It appears that the application has not been

updated since approximately 2008, and only operates under the Windows XP

environment. The primary method of detection utilizes the cross-view

technique, but it appears that a limited hooking detection capability is also

provided. The installation is very straightforward; the application is a

standalone .exe file and can be used via USB drive. The user interface is also

fairly intuitive, there are a limited number of options to select which type of

51

scan to perform and the results are clearly indicated in a textbox, as

shown in Figure 22.

Figure 22. McAfee Rootkit Detective

6.17 Microsoft Security Essentials

Security Essentials, shown in Figure 23, is a free application developed by

Microsoft. It is similar in functionality to other malware detection

applications such as MBAM and F-Secure, however it is freely available at no

charge. The tool incorporates several different detection techniques,

including signature-based, cross-view, as well as heuristics-based detection.

Security Essentials hooks a number of Windows services in an attempt to

provide better real-time protection, however it does not appear to have any

52

self-protection mechanisms built in. One significant advantage to using

Security Essentials is that it integrates well with the Windows OS, due to

collaboration between the associated departments at Microsoft. This ensures

that OS changes that could adversely affect the operation of the detector

should be minimized.

Figure 23. Microsoft Security Essentials

6.18 Panda Internet Security

Panda Internet Security, shown in Figure 24 is a broad malware detection

application developed by Panda Security. It is similar to applications such as

Kaspersky and F-Secure Internet Security in that it provides on demand

system scanning, as well as real-time protection from malware. Installation

53

and operation are both very intuitive, with options to perform customized

configuration and various levels of system scanning being clearly displayed.

The application also hooks various Windows services such as

NtTerminateProcess and several others to provide better real-time protection

as well as preclude malware from interfering or terminating its operation.

Figure 24. Panda Internet Security

6.19 Rootkit Revealer

Rootkit Revealer, shown in Figure 25, was one of the first rootkit detection

applications, and was developed by Mark Russinovich from Microsoft. It was

the first application to use the cross-view technique to reveal the presence of

hidden files and registry keys within the Windows operating system. Rootkit

Revealer does not perform any sort of detection of code hooks or kernel

54

memory modifications, it only detects hidden files and registry keys. One

other drawback is that Rootkit Revealer does not offer any removal services.

While Rootkit Revealer was a high-performing application in the 2006-2007

timeframe, and was recommended by a large number of security experts, it

has not been updated in almost 4 years. As a result, it is unable to detect

most of the modern rootkits available today.

Figure 25. Rootkit Revealer

6.20 Rootkit Unhooker

Rootkit Unhooker is an free, on-demand rootkit scanner and system

diagnostic utility developed by an anonymous Russian security researcher

known as DiabloNova. This tool utilizes several detection techniques,

including cross-view, hooking, and kernel modification detection. The

installation is very simple, since the application runs as a standalone .exe

file. The user interface is also very intuitive, as shown in Figure 26. A

tabbed interface is used to clearly show the different types of diagnostic

scans available. A “Report” tab provides a comprehensive system scan that

55

integrates all of the results in one output file. The output from the various

types of scans clearly explains the system discrepancy, and makes it very

easy for the user to determine if action needs to be taken. In addition to the

scanning and system diagnostics, Rootkit Unhooker provides the ability to

restore system hooks as well as limited file removal capability. Rootkit

Unhooker also hooks several Windows services such as NtCreateProcessEx

and NtTerminateThread to provide self-protection mechanisms, although

real-time protection is not provided.

Figure 26. Rootkit Unhooker

56

6.21 RootRepeal

RootRepeal is an on demand rootkit scanner and system diagnostic utility

developed by a private security researcher in Poland. It is very similar to

tools such as Rootkit Unhooker and GMER, and provides essentially the same

interface and capabilities. It operates as a standalone .exe file and provides

a very intuitive tabbed interface to select between the various types of scans,

shown in Figure 27. A comprehensive scanning report is also available.

Figure 27. RootRepeal

57

6.22 Sophos Anti-Rootkit

The Sophos Anti-Rootkit application is an on-demand rootkit scanner

developed by the Sophos Security Corporation. The primary detection

algorithm utilizes the cross-view technique to reveal the presence of hidden

processes, files and registry keys. It does not perform any detection of

system hooks or kernel memory modifications. The application operates as a

standalone file, and the user interface is extremely simple. As can be seen in

Figure 28, essentially the only option available to the user is to click a “Start

Scan” button, and the results are listed in the window upon completion of the

scan. There are virtually no options to configure the operation of the

program.

Figure 28. Sophos Anti-Rootkit

58

6.23 Spybot Search and Destroy

Spybot Search and Destroy, shown in Figure 29, is an on-demand malware

scanning application developed by Safer Networking Ltd. The focus of

Spybot is to detect and remove spyware and viruses; however, for the

purposes of the thesis research, it was included to demonstrate the inability

of this application to detect rootkits. Spybot uses a signature-based

detection algorithm to scan both the hard disk and memory for malware, and

does not perform any other type of detection technique such as the cross-

view method.

Figure 29. Spybot Search & Destroy

59

6.24 The Cleaner

The Cleaner 2011, shown in Figure 30, is a malware detection and removal

application created by Moosoft Development. It incorporates several

different types of detection techniques, including signature-based, cross-

view, as well as heuristics-based detection. It does not appear to perform

any hooking detection. The software acts as both an on demand disk and

memory scanner, and also offers real-time system protection. The

application does not appear to have any self-protection mechanisms to

prevent malware from interfering with its operation, unlike applications such

as GMER, Kaspersky, and MBAM. The installation and operation for The

Cleaner is very intuitive, and there are several different configuration options

to select different levels of system scanning.

60

Figure 30. Moosoft The Cleaner

6.25 Trend Micro Rootkit Buster

Rootkit Buster, shown in Figure 31, is a free on-demand scanner developed

by the Trend Micro Corporation. The tool primarily utilizes the cross-view

technique to detect hidden files and processes, but also performs hooking

detection as well. It appears that Rootkit Buster has not been updated since

approximately 2007, so some malware authors have likely figured out how to

work around Rootkit Buster’s capabilities. The application is a standalone

.exe file, and the user interface is very simple. The use simply has to select

the various types of system components to inspect, and click the “Scan Now”

61

button. The results are clearly displayed in a textbox, and can be

subsequently selected for removal.

Figure 31. Trend Micro Rootkit Buster

6.26 VBA32

VBA32, shown in Figure 32, is an on-demand and real-time malware scanner

developed by Virus Blok Ada, a security company located in Belarus. The

application incorporates several different types of detection techniques,

including hooking detection, cross-view, as well as heuristic-based detection.

The application does not appear to provide any self-protection mechanisms

to prevent malware from interfering with its operation. The user interface for

the VBA32 is not as clear as some of the other applications, but there are

62

several different configuration options for different levels of system scans,

and the user just has to press the “Start” button to begin a scan.

Figure 32. VBA32

6.27 XueTr

XueTr is a system diagnostic tool and rootkit scanner developed by an

anonymous Chinese security researcher. XueTr primarily uses the cross-view

and hooking detection techniques to identify malicious software. XueTr acts

as a standalone .exe file, and the user interface is fairly intuitive. There are

approximately a dozen different tabs (shown in Figure 33) that can be

selected to view different areas of the operation system, and if a file needs to

be removed or a hook restored, it is straightforward to perform those actions

by right-clicking on the affected object. The program also provides self-

63

protection mechanism by hooking various Windows in the Shadow SSDT,

to protect the GUI/window from being closed by a malicious application.

One thing that appears to be missing is a comprehensive scan and reporting

capability, which is offered by applications such as GMER and Rootkit

Unhooker.

Figure 33. XueTr Diagnostic Tool

64

7.0 Experimental Results

The analysis of this thesis aims to investigate the ability of a large number of

anti-rootkit tools to detect and remove a sample of modern rootkits. In this

section, the results of the anti-rootkit tool scans will be presented for each of

the rootkits. When possible, the characteristics of the anti-rootkit tools will

be taken into consideration when analyzing the results of the scans.

However, due to the highly proprietary nature of many of the anti-rootkit

tools, the details of their detection and removal algorithms cannot be

determined. When possible further testing was performed to isolate which

technique (signature-based, heuristic-based, etc.) was successful at

detecting the rootkit.

In addition to the scan results, the steady-state performance for each of the

infected systems will be compared against a clean system. Both the steady-

state processor utilization and network performance will be presented and

analyzed. A limited amount of system forensic analysis will also be

presented for each of the infected systems, including filesystem and registry

changes, as well as any modifications to Windows OS internal structures.

Finally, the results of the network-based detection technique will be

presented and analyzed.

7.1 System Performance and Forensic Analysis

In this section, the steady-state CPU and network utilization for each of the

infected systems will be presented and analyzed, and compared to a clean

system. In order to provide an adequate baseline, approximately 60

65

consecutive hours of data was recorded. The time interval for the CPU

measurements was 15 seconds, which is reasonable based on the large

amount of observation time [47]. For the network traffic analysis, the

dumpcap.exe Wireshark utility was used to capture each packet that was

processed by the network interface.

7.1.1 Filesystem/Registry Modifications

By using the methodology as described in Section 4.1, it was possible to

observe several filesystem and Windows registry changes caused by each of

the rootkits.

The TDL3 rootkit installed a randomly-named file (55wWS.sys) in the

C:\Windows\Temp directory, which is a known location for the usermode

component [14]. Additionally, the HKLM\system\ControlSet003\Services\

Tcpip\Parameters\NameServer registry key was modified to include the IP

addresses 93.188.163.73 and 93.188.166.108, which are both located in the

Ukraine. It is likely that these domains are responsible for performing the

URL redirects that TDL3 is known for.

The Rustock rootkit kernel-mode component file (sstamnsq.sys) in the

C:\Windows\System32\Drivers directory was reported by Windiff, however

this was expected because the rootkit was installed manually. The only

registry keys that appear to have been modified were associated with the

HKEY_LOCAL_MACHINE\system\ControlSet001\Enum family of keys, which is

responsible for ensuring that the driver is loaded at startup.

66

The Black Energy rootkit installed a randomly-named file

(szbkqmckhcv.sys) in the Local Settings directory, which is the usermode

component. The kernel-mode component (str.sys) was installed in the

C:\Windows\System32 directory. There were also a large number of registry

keys that were created in order to ensure the usermode driver was loaded as

a service upon system startup. For example, the HKLM\system\

ControlSet001\Services\domwjfvo registry key was assigned a value of

“C:\Docume~1\Thomas\LOCALS~1\Temp\szbkqmckhcv.sys”.

The Zbot rootkit created the lowsec directory in C:\Windows\System32, and

installed the three files as described in Section 5.4. Additionally, Zbot

installed the rootkit driver component (sdra64.exe) in the System32

directory as well. The registry key HKLM\software\Microsoft\Windows

NT\CurrentVersion\Winlogon\Userinit was updated to include the path to the

sdra64.exe file, so that it could be executed upon startup. Note that this is

slightly different that than the Black Energy and Rustock startup registry

modifications, since sdra64.exe is not being loaded as a Windows service, but

it effectively achieves the same effect (surviving reboots).

7.1.2 Processor Utilization

 In Figure 34, the steady-state CPU utilization for an uninfected machine is

presented. The processor utilization in percent is shown on the y-axis, and

time in 10000 seconds (104 seconds) is shown on the x-axis. It can be seen

that over a period of approximately 41 hours, the steady-state CPU

utilization is approximately .1 percent, which is expected since there is no

67

activity being performed, other than the data logging. This data will be

used as a baseline which can be compared against each of the infected

systems.

Figure 34. Processor Utilization for an Uninfected Machine

Figure 35 displays the CPU utilization for a TDL3-infected system. It can be

seen that over a period of approximately 62 hours, the utilization is

progressively trending upward in a linear manner. This is clearly a very

unstable system and at some point will likely be unable to perform any useful

work.

68

Figure 35. Processor Utilization for a TDL3-infected Machine

Figure 36 shows the CPU utilization for a Rustock-infected machine. As can

be seen from the data, this system, which was observed for approximately

62 consecutive hours, appears to be much more stable than the TDL-3

machine. However, the average CPU utilization is approximately 0.2 percent,

which is double that of the uninfected system. The stability would likely not

be an issue, but overtime this system would use up more power resources,

which could be very undesirable for large deployments in environments such

as data centers.

69

Figure 36. Processor Utilization for a Rustock-infected Machine

Figure 37 shows the steady-state CPU utilization for a system infected with

the Black Energy rootkit, collected over a period of approximately 62

consecutive hours. As can be seen from the data, the system appears to be

much more stable than the system infected with TDL3. However, similar to

Rustock, the baseline CPU utilization does appear to be significantly higher

than the clean system.

70

Figure 37. Processor Utilization for Black Energy-infected Machine

Figure 38 shows the CPU utilization for a system infected with the Zeus

rootkit. As can be seen from the data, the system appears to be much more

stable than the one infected with TDL3. However, the baseline CPU

utilization is significantly higher than the uninfected system, similar to the

Rustock and Black Energy systems.

71

Figure 38. Processor Utilization for a Zeus-infected Machine

7.1.3 Network Utilization

In this section, the steady-state network utilization for each of the rootkits

will be presented and analyzed. The network activity was captured using the

dumpcap.exe Wireshark utility, which records each packet that is processed

by the Network Interface Card (NIC) for the system. Next, the tshark.exe

Wireshark utility was used to process the captured packets and provide

statistics for each 10 minute time segment during the captured period, using

[21] as an example. The tshark.exe utility can calculate statistics for

virtually any scenario which the user would like to analyze, by filtering the

different types of packets that were captured. For this exercise, the

72

outbound HTTP traffic was analyzed, because this was the only outbound

network traffic observed for each of the rootkits.

In order to provide a baseline to compare the rootkit network activity

against, approximately 41 consecutive hours of network packets were

captured. During this period, there was no user activity performed, in order

to provide an adequate characterization of the steady-state network

utilization of the operating system. During this 41-hour period, there were

no outbound HTTP network packets observed. However, there were a large

number of internal network protocol packets, such as Address Resolution

Protocol, Cisco Discovery Protocol, NetBIOS Name Service, etc. These will

not be counted as they are internal packets only.

In Figure 39, the steady-state network utilization for a machine infected with

the TDL3 rootkit is presented. As can be seen, there is a significant amount

of automated HTTP traffic that is generated by the TDL3 rootkit. All of the

outbound HTTP traffic was directed to the IP address 174.142.51.9, which is

a well-known TDL3 remote server [14]. As described in [19], an Intrusion

Detection System should be able to recognize this traffic as unusual and flag

it to a System Administrator.

73

Figure 39. Outbound Network Traffic for a TDL3-infected Machine

In Figure 40, the steady-state network utilization for a machine infected with

the Rustock rootkit is presented. As can be seen from the data, which was

captured over a period of approximately 62 consecutive hours, the Rustock

rootkit did not generate very much outbound HTTP traffic. However, at

approximately 1.5 hours into the data capture, a brief surge in automated

outbound HTTP traffic occurred. This HTTP was sent to several different IP

addresses, and was likely spam emails.

74

Figure 40. Outbound Network Traffic for a Rustock-infected Machine

In Figure 41, the steady-state network utilization for a machine infected with

the Black Energy rootkit is presented. As can be seen from the data, there

was virtually no automated outbound HTTP traffic generated by the Black

Energy rootkit, with a couple of brief periods of communication with a remote

server at IP address 207.46.141.43, which is located in Russia. This is likely

communication with the botmaster for the Black Energy botnet.

75

Figure 41. Network Utilization for a Black Energy-infected Machine

In Figure 42, the network utilization for a machine infected with the Zeus

rootkit is presented. As can be seen from the data, the Zeus rootkit

generated a large amount of automated outbound HTTP traffic, similar to the

TDL3 rootkit. The remote IP address for all of the network communication

was 122.155.1.200, which is a known Zeus/Zbot command and control

server located in Thailand. This activity would likely be flagged by an

Intrusion Detection System, similar to the TDL3 traffic.

76

Figure 42. Network Utilization for a Zeus-infected Machine

77

7.2 Anti-Rootkit System Scans

In this section the results of the Anti-Rootkit scanning for a clean system as

well as each rootkit will be presented, followed by a ranking to show the best

and worst performers for the overall dataset.

Before performing any ARK scans on rootkit-infected machines, the tools

were used on a clean system to provide a baseline. In

78

Table 2, the results of these nominal scans are presented. The scanning

time is shown, as well as any false positive results. A false positive was

defined as any object (file, process, etc.) that was flagged by the ARK tool as

potentially malicious.

As can be seen from the table, only F-Secure Internet Security, Microsoft

Security Essentials, Rootkit Revealer, and The Cleaner reported false positive

results. Both of the F-Secure and Microsoft tools reported another ARK tool

(K X-ray) as malicious, which is likely due to their heuristic algorithms

detecting “rootkit-like” behavior such as hooking. Rootkit Revealer reported

several Windows-OS registry keys as suspicious. The Cleaner reported

glmf32.dll, a Windows library for creating Open Graphics Library (OpenGL)

metafiles, as suspicious.

79

Table 2. Nominal (Clean) Anti-Rootkit Scan Results

Anti-Rootkit Tool
Scan Time

(MM:SS)

False

Positives

Atool N/A No

Avast! Antirootkit 8:42 No

AVZ Antivirus 0:36 No

CMC Antirootkit N/A No

ComboFix 3:49 No

ESET SysInspector N/A No

F-Secure Internet Security 2011 17:15 Yes

GMER 27:10 No

Helios N/A No

Hidden Finder N/A No

Ice Sword N/A No

K X-ray N/A No

Kaspersky Internet Security 2011 16:59 No

Kernel Detective N/A No

Malware Bytes Anti-Malware 9:43 No

McAfee Rootkit Detective 0:35 No

Microsoft Security Essentials 49:10 Yes

Panda Internet Security 2011 14:07 No

Rootkit Revealer 0:45 Yes

Rootkit Unhooker 6:04 No

RootRepeal 0:30 No

Sophos Antirootkit 4:01 No

Spy Bot 20:23 No

Moosoft The Cleaner 2011 6:45 Yes

Trend Micro Rootkit Buster 0:20 No

VBA 32 0:49 No

XeuTr N/A No

In Table 3

80

, the results of the TDL3 ARK scans are shown. The TDL3 rootkit dropper

was downloaded from malwaredomainlist.com, a reputable source of

malware that is used for research purposes. Additionally, the dropper was

later uploaded to Virustotal.com for static analysis and was verified to be the

TDL3 rootkit. The first observation that can be made from these scans is

that only tools that are currently in active development were able to detect

the presence of TDL3. This is not unexpected, due to the constant battle

between the white hats/black hats in the development of their respective

software. The authors of TDL3 have been able to figure out the various

detection methods of outdated software such as Rootkit Revealer and Ice

Sword, and have worked around them to remain hidden.

Table 3. TDL3 Anti-Rootkit Scan Results

Anti-Rootkit Tool Detected

Scan

Time

(MM:SS)

False

Positives
Removal

Atool No N/A No N/A

Avast! Antirootkit No 24:49 Yes N/A

AVZ Antivirus No 4:41 Yes N/A

CMC Antirootkit Wouldn’t start N/A N/A N/A

ComboFix Wouldn’t start N/A N/A N/A

ESET SysInspector No N/A Yes N/A

F-Secure Internet Security Yes 19:15 No Yes

GMER Yes 5:30 No No

Helios No N/A Yes N/A

Hidden Finder No 17:00 No N/A

Ice Sword No N/A No N/A

K X-ray No N/A No N/A

Kaspersky Internet Security Yes 25:00 No Yes

Malware Bytes Anti-Malware Yes 28:53 Yes No

McAfee Rootkit Detective No 0:40 No N/A

Microsoft Security Essentials Yes 26:00 Yes Yes

Panda Internet Security 2011 Yes 16:15 Yes No

Rootkit Revealer No 1:30 Yes N/A

Rootkit Unhooker Yes 8:54 No No

RootRepeal No N/A Yes N/A

Sophos Antirootkit No 4:51 Yes N/A

Spy Bot Wouldn’t start N/A N/A N/A

81

Moosoft The Cleaner 2011 Yes 2:13 Yes No

Trend Micro Rootkit Buster No 0:05 No N/A

VBA 32 No 0:45 No N/A

XeuTr No N/A Yes N/A

Additionally, each of the tools that were able to detect TDL3 employ some

method of self-protection. Most of these use kernel mode hooks to prevent

their process or threads from being terminated by malware, as well as some

other methods such obfuscating their process name. As described earlier,

TDL3 is able to actively blacklist certain anti-malware tools and undermine

their successful operation. For example, Combofix and Spybot Search &

Destroy would not even install, and Microsoft Security Essentials was not able

to download updates to the malware definitions file. Figure 43 shows an

example of the TDL3 detection by Microsoft Security Essentials.

Figure 43. Microsoft Security Essentials Detection of TDL3

82

The particular detection techniques that the respective ARK tools used to

successfully detect TDL3 were not clear from the output of the tools,

although it appears that memory scanning and heuristic/emulation are likely

important factors. Kaspersky Internet Security as well as several other of

the tools use emulation to execute each of the drivers in a “sandbox”

environment. If heuristic tests detect unusual behaviors such as remote

network communication or unusual access to disk sectors, then the driver will

be flagged as suspicious. Sysreveal was able to detected a large number

(~250) of File System hooks, but was unable to remove any of them.

83

In Table 4, the results of the Rustock ARK scans are shown. The Rustock

driver was downloaded from www.kernelmode.info, which is a research-

based website dedicated to analysis of malware and rootkits. The driver was

also uploaded to Virustotal.com for static analysis and reported as Bubnix,

which is the term that many antimalware software uses for the latest version

of Rustock.

Table 4. Rustock Anti-Rootkit Scan Results

Anti-Rootkit Tool Detected

Scan

Time

(MM:SS)

False

Positives
Removal

Atool No N/A No N/A

Avast! Antirootkit Yes 21:00 Yes No

AVZ Antivirus Yes 1:53 Yes No

CMC Antirootkit Yes N/A No No

ComboFix Yes 6:03 No Yes

ESET SysInspector No N/A No N/A

F-Secure Internet Security Yes 13:37 Yes No

GMER Yes 9:30 No No

Helios Lite No N/A No N/A

Hidden Finder No N/A No N/A

Ice Sword No N/A No N/A

K X-ray No N/A No N/A

Kaspersky Internet Security Yes 24:02 No No

Kernel Detective No N/A No No

Malware Bytes Anti-Malware Yes 13:10 No Yes

McAfee Rootkit Detective No 0:35 No N/A

Microsoft Security Essentials Yes 48:00 Yes No

Panda Internet Security 2011 Yes 18:00 No No

Rootkit Revealer Yes 0:25 Yes No

Rootkit Unhooker Yes 5:00 Yes No

RootRepeal Yes 0:30 Yes No

Sophos Antirootkit Yes 4:29 No No

Spy Bot No 25:30 No N/A

Sysreveal No N/A No N/A

Moosoft The Cleaner 2011 No 9:10 No N/A

Trend Micro Rootkit Buster No 0:10 No N/A

VBA 32 Wouldn’t run N/A N/A N/A

XeuTr Yes N/A Yes No

84

One thing that is different from this set of scans versus the TDL3 scans is

that outdated ARK tools were able to detect the infected driver and registry

keys as suspicious. Rustock is not quite as sophisticated as TDL3, so it is

reasonable to expect this type of result. The only tools that were able to

remove the Rustock driver were Combofix and MBAM, as shown in Figure 44.

The detection/removal techniques for these tools are highly proprietary, and

it is not clear what differentiates them from other tools in this case.

Figure 44. MBAM Detection of Rustock Driver

Table 5 displays the results of the Black Energy ARK scans. The dropper was

also downloaded from kernelmode.info and verified using Virustotal.com. As

expected, many of the actively-developed ARK tools were able to detect

various components of Black Energy, and a few of them (GMER, Rootkit

Unhooker, Kernel Detective) even reported the use of the extra SSDTs.

85

Table 5. Black Energy Anti-Rootkit Scans

Anti-Rootkit

Tool
Detected

Scan

Time

(MM:SS)

False

Positives
Removal

 Registry Driver SSDT

Atool No No No N/A No N/A

Avast! Antivirus No Yes No 8:37 No No

AVZ Antivirus No 5:12 No N/A

CMC Antirootkit No Yes No N/A No No

ComboFix No Yes No 2:30 No Yes

ESET SysInspector No Yes No N/A No No

F-Secure Internet

Security

No 9:03 Yes No

GMER Yes Yes Yes 9:05 No

Helios Lite Yes Yes No N/A Yes No

Hidden Finder No No N/A

Ice Sword No No No N/A No N/A

K X-ray No No No N/A No N/A

Kaspersky

Internet Security

No Yes No 22:30 No Yes

Kernel Detective No No Yes N/A No

Malware Bytes

Anti-Malware

Yes Yes No 12:18 No Yes

McAfee Rootkit

Detective

Yes No No 1:05 No No

Microsoft Security

Essentials

Yes No No 35:00 Yes Yes

Panda Internet

Security 2011

No Yes No 15:22 Yes Yes

Rootkit Revealer Yes No No 0:45 Yes No

Rootkit Unhooker No Yes Yes 7:30 No Yes

RootRepeal No Yes Yes 0:50 Yes Yes

Sophos Antirootkit Yes 4:39 No No

Spy Bot No 12:50 Yes N/A

Moosoft The

Cleaner

Yes No No 15:47 No No

Trend Micro

Rootkit Buster

Yes No No 0:30 Yes Yes

VBA 32 No 2:40 No N/A

XeuTr No No Yes N/A Yes No

Sysreveal No No Yes N/A No No

MBAM was able to identify the kernel-mode component (str.sys) using the

heuristics-based scan, and was able to detect the user-mode component with

the filesystem cross-view scan. Also, several of the outdated tools such as

86

IceSword, McAfee Rootkit Detective, etc. were unable to detect the SSDT

hooking, since they only looked at the primary 2 SSDTs. One of the more

interesting observations was the detection and removal of Black Energy by

Trend Micro Rootkit Buster, which is one of the older and more outdated

tools. It is interesting that this tool was able to detect the registry keys via

cross-view comparison and remove the offending key, ultimately killing the

rootkit upon reboot. Typically older tools have not performed well against

current rootkits, but this was an interesting exception. Overall, it was very

interesting that the simple removal of the registry keys would prevent the

rootkit from operating upon reboot. This could be an example of a “bug” due

to the recent update of the rootkit software, and may very likely be fixed in

the near future. An example of the detection of the faked SSDT by Rootkit

Unhooker is shown in Figure 45.

Figure 45. Black Energy Detection by Rootkit Unhooker

87

In Table 6, the results of the Zeus/Zbot ARK scans are shown. The Zbot

dropper was also downloaded from malwaredomainlist.com and verified using

Virustotal.com.

Table 6. Zeus/Zbot Anti-Rootkit Scans

ARK Tool Detected

Scan

Time

(MM:SS)

False

Positives
Removal

 Sdra64 lowsec Reg

Atool No No No N/A N/A N/A

Avast! Antivirus No No No 9:42 Yes N/A

AVZ Antivirus No No No 0:41 Yes N/A

CMC Codewalker No No No N/A No N/A

ComboFix Yes Yes No 6:55 No Yes

ESET SysInspector No No No N/A No N/A

F-Secure Internet

Security 2011

Yes No No 19:55 Yes Yes

GMER No No No N/A No N/A

Helios Lite No No No N/A Yes N/A

Hidden Finder No No No No N/A

Ice Sword Yes Yes No N/A No No

Kernel Detective No No No N/A No N/A

K X-ray No No No N/A No N/A

Kaspersky IS 2011 No No No 24:00

Malware Bytes

Anti-Malware

Yes Yes Yes 9:26 No Yes

McAfee Rootkit

Detective

No No No 1:30 No N/A

Microsoft Security

Essentials

Yes No No 35:00 Yes Yes

Panda IS 2011 No No Yes 14:50 Yes Yes

Rootkit Revealer No No No 0:30 Yes N/A

Rootkit Unhooker Yes Yes No 7:20 No No

RootRepeal No No No 1:00 No N/A

Sophos Anti-

Rootkit

Yes No No 4:03 No No

Spy Bot Search

and Destroy

Yes Yes Yes 15:40 No Yes

SysReveal No No No N/A No N/A

The Cleaner 2011 Yes No Yes 9:00 Yes No

Trend Micro

Rootkit Buster

No No No 0:15 No N/A

VBA32 No No No 2:30 No N/A

XueTr Yes Yes No N/A No Yes

88

As can be seen from the table, ten of the detectors (approximately a third)

were able to detect the presence of the hidden driver, the configuration files,

or the registry keys. Out of those, only five detectors were able to

completely remove the rootkit driver, files, and registry keys. Microsoft

Security Essentials and F-Secure were able to detect and remove the hidden

sdra64.exe driver, but did not remove the configuration files or registry keys.

However, it should be noted that the removal of sdra64.exe effectively kills

the rootkit, as it cannot copy itself into running processes. MBAM was able

to only detect the sdra64.exe component using the filesystem cross-view

scan, but was able to detect the lowsec directory and associated files once

the heuristics-based scan was enabled.

Despite being one of the better performing tools, GMER was unable to

complete its scan, and crashed after approximately 20 minutes of operation.

This is a good example of the system instabilities that can occur when

rootkits and anti-rootkit tools are utilizing low-level kernel data structures.

Removal of the Zeus rootkit was confirmed by rebooting and performing

subsequent scans of corroborating tools, as well as observing the lack of

certain behaviors, such as the hiding of the System32/lowsec directory and

the lack of the backdoor TCP port associated with Winlogon.exe or

Svchost.exe.

In Table 7, an overall ranking of the ARK tools is presented, based on their

performance at detecting and removing rootkits, as well as reporting false

positives. A simple scoring system was used: one point was given for

89

successful detection, one point was given for successful removal, and one

point was taken away for each false positive that was reported. Typically the

ARK tool would report the same false positive across all the tests, and this

was counted only once.

Table 7. Overall Ranking of ARK Tools

Anti-Rootkit Tool Detection Removal
False

Positives

Overall

Score

Malware Bytes Anti-Malware 4 3 -1 6

Combofix 3 3 0 6

Kaspersky Internet Security 2011 3 2 0 5

Panda Internet Security 2011 4 2 -1 5

Microsoft Security Essentials 4 2 -1 5

F-Secure Internet Security 2011 3 2 -1 4

Rootkit Unhooker 4 0 0 4

GMER 3 0 0 3

CMC Antirootkit 2 0 0 2

RootRepeal 2 1 -1 2

Sophos Antirootkit 3 0 -1 2

Moosoft The Cleaner 2011 3 0 -1 2

XeuTr 3 0 -1 2

Avast! Antirootkit 2 1 -2 1

Ice Sword 1 0 0 1

Kernel Detective 1 0 0 1

McAfee Rootkit Detective 1 0 0 1

Rootkit Revealer 2 0 -1 1

Spy Bot 1 1 -1 1

Trend Micro Rootkit Buster 1 1 -1 1

Sysreveal 1 0 0 1

Atool 0 0 0 0

ESET SysInspector 1 0 -1 0

Helios 1 0 -1 0

Hidden Finder 0 0 0 0

K X-ray 0 0 0 0

VBA 32 0 0 0 0

AVZ Antivirus 0 0 -1 -1

As can be seen from Table 7, the top performing ARK tools were those that

are still in active development, and many of the worst performing tools were

no longer being actively updated. Also, many of best performers were

90

“Internet Security” tools that performed a variety of malware detection

tasks and used several different detection methods.

One feature that many of the top performing tools share is the use of

heuristics to detect new version of malware. Some “isolation” testing was

performed on several of the top-performing tools to determine which

detection technique was driving the results. In these tests, heuristics did

make a difference in the detection of varying components, such as the Black

Energy kernel-mode component (str.sys) and the Zbot lowsec directory and

associated files.

Also, these tools tended to have much longer scanning times than the lower-

performing detectors. On the surface, the additional scanning time could be

considered as poor efficiency/performance; however, it is more likely that

these tools are performing much deeper looks at the filesystem and applying

heuristics-based techniques on the files, which would take longer than a

traditional “cross-view” type of scan. Finally, it should be noted that the best

performing applications hooked Windows services to provide better real-time

protection, as well as self protection for the ARK tool.

91

7.3 Network-Based Detection

In this section, the results of the Netstat and Nmap operations are displayed

as a series of window captures. After each set of window captures, a

description of the results and will be provided. The initial window captures

are for a clean system, followed by a set of window captures from a system

infected by the Hacker Defender rootkit. After that, a set of window captures

will be provided for each of the rootkits used in the main thesis research

(Rustock, TDL3, Black Energy, and Zeus/Zbot).

Figure 46 and Figure 47 displays the output of Netstat and Nmap against an

uninfected, clean system. This provides a baseline for the remaining rootkit

scans. As can be seen from the output, there was a total of 10 non-loopback

ports reported by Netstat. Nmap was able to detect all of these, and

associate a service with each of them. Based on the lack of discrepancies, it

can be inferred that no rootkits are hiding network activity.

92

Figure 46. Clean System Netstat Output

Figure 47. Clean System Nmap Port Scan

Figure 48 and Figure 49 display the output of Netstat and Nmap against a

system infected with the Hacker Defender rootkit. This 2004-era rootkit is

well-known to have the ability to hide network ports, which should

demonstrate the efficacy of the network-based detection technique. For this

93

example, Hacker Defender was configured to hide TCP ports 135 and 139.

As can be seen from the output in Figure 48, Netstat detected 8 non-

loopback network ports, and TCP ports 135 and 139 were not reported.

However, in Figure 49, it can be seen that Nmap was able to detect 10 TCP

and UDP ports, including 135 and 139. Given the discrepancy in the output,

assuming no other information was available, it would be very likely that a

rootkit was hiding network activity from the local user.

Figure 48. Hacker Defender Netstat Output

94

Figure 49. Hacker Defender Nmap Port Scan

Figure 50 and Figure 51 display the output of Netstat and Nmap against a

system infected with the TDL3 rootkit. As can be seen from the output in

Figure 50, Netstat detected 12 non-loopback network ports. A couple of

differences from the baseline can be noted. First, a service on TCP port

10323 is listening for a connection, which is likely a backdoor. Additionally, a

connection to a Microsoft Hotmail IP address has been established, again this

is a possible backdoor method to communicate with a botmaster. There is

no research to provide this; however, this is a consistent network signature

with TDL3 infections, and this connection must be used in connection with

the botnet in some way.

In Figure 51, the output of Nmap can be seen. It was able to detect 11 open

or listening TCP/UDP ports, and as expected could not detect the established

Hotmail connection as described in the previous paragraph. Based on a

95

comparison between Netstat and Nmap, it appears that TDL3 does not

attempt to hide any network ports. This does not mean that there is no

malicious network activity, but as described in the Introduction, many

botnet/rootkit authors are no longer hiding the network ports.

Figure 50. TDL3 Netstat Output

Figure 51. TDL3 Nmap Port Scan

96

Figure 52 and Figure 53 display the output of Netstat and Nmap against a

system infected with the Rustock rootkit. As can be seen from the output in

Figure 52, Netstat detected 10 non-loopback network ports, which were all

detected by Nmap in Figure 53. There appear to be no differences between

this set and the baseline set. However, this Rustock-infected machine has

been observed to perform suspicious connections upon bootup, but this is the

steady-state network performance of the machine, and there appear to be no

hidden connections or active backdoors. However, Rustock has been

observed to perform spamming operations on a cyclical basis [7], so before

any conclusions can be drawn, the network activity of the rootkit/botnet

should be observed on a more extended basis.

Figure 52. Rustock Netstat Output

97

Figure 53. Rustock Nmap Port Scan

Figure 54 and Figure 55 display the output of Netstat and Nmap against a

system infected with the Black Energy rootkit. As can be seen from the

output in Figure 54, Netstat detected 11 non-loopback network ports. One

difference from the baseline was an established UDP connection on port

58341, which was a likely backdoor for the Black Energy botmaster.

Otherwise, there appear to be no differences between this set and the

baseline. In Figure 55, Nmap was able to detect all the open or listening TCP

and UDP ports, and as expected, was not able to detect the open UDP port.

Based on this set, it appears that while Black Energy does have a backdoor

UDP port, the rootkit does not attempt to hide any of its network activity.

98

Figure 54. Black Energy Netstat Output

Figure 55. Black Energy Nmap Port Scan

Figure 56 and Figure 57 display the output of Netstat and Nmap against a

system infected with the Zeus/Zbot rootkit. As can be seen from the output

in Figure 56, Netstat detected 11 non-loopback network ports. One

difference from the baseline was a listening TCP connection on port 21470,

which was a likely backdoor for the Zeus botmaster. Otherwise, there

99

appear to be no differences between this set and the baseline. In Figure

57, Nmap was able to detect all the open or listening TCP and UDP ports,

including the backdoor TCP port. Based on this set, it appears that while

Zeus does have a backdoor UDP port, the rootkit does not attempt to hide

any of its network activity.

Figure 56. Zeus Netstat Output

Figure 57. Zeus Nmap Port Scan

100

8.0 Conclusions

Rootkits are a significant threat to information security, as was observed in

the set of system performance observations in this thesis research. The

resulting network and system performance impacts, as well as the potential

loss of sensitive information, can be disastrous for an individual user or

organization. This thesis analyzed a large number of different rootkit

detection applications and techniques in order to determine the best methods

to neutralize the most recent rootkit threats.

The results of the ARK scans highlight the need to use actively-developed

tools in attempting the detection and removal of the latest rootkits. Out of

the 28 ARK tools that were used in the research, the top 8 were all still being

updated to reflect the most recent trends in malware development.

Additionally, the best performing tools were those that utilized multiple

detection techniques to identify malware. Most notably, the common

characteristics of the top performing ARK tools were the use of heuristics-

based detection, as well as hooking Windows services to provide better ARK

tool self-protection and real-time detection of malware. Some follow-on

testing demonstrated that heuristics did make a difference in detecting some

rootkit components which were not detected by other methods such as

memory or filesystem cross-view scanning.

In addition to performing a large number of ARK scans, the network-based

“cross-view” rootkit detection method was demonstrated by comparing the

output of a local, API-driven application (Netstat) versus an external port

101

scanner (Nmap). The method was demonstrated to be successful in

detecting the hidden ports from the Hacker Defender rootkit. However, it

appears that none of the modern rootkits included in the thesis research

make an attempt to hide their network port activity. With the exception of

the Rustock rootkit, each of the others (TDL3, Black Energy, and Zeus/Zbot)

appeared to have active backdoor ports able to connect to remote servers.

While seemingly counterintuitive to the idea of a stealth rootkit, this finding

does seem to agree with recent analysis by subject matter experts [18].

While it appears that the network-based procedure may not always detect

the presence of a rootkit, it should still be included in the standard practice of

a forensic investigator. The fact that 3 of the 4 rootkits were observed to

have active backdoor ports in place would likely arouse suspicion and further

investigation, which could lead to the detection of the malware. Additionally,

this type of “cross-view” technique could be automated and used in concert

with Intrusion Detection Systems such as Web Tap [19] to provide more

complete coverage from a network perspective.

8.1 Future Research

Based on the results of the ARK scans, further research should focus on

developing an optimal set of heuristic-based rules to detect rootkit activity,

which maximizes the rate of detection while minimizing the rate of false

positives. By focusing on dynamic behavior, it is likely that an ARK

developer will keep up with the latest threats and provide better overall

security.

102

REFERENCES

[1] Alien Registry Viewer (3.5.567) [Software], 2010, Available from

http://lastbit.com/arv/
[2] "AV-Comparatives," AV-Comparatives, Web, Accessed on 21 March

2011, http://www.av-comparatives.org/.

[3] "Backdoor.Tdss.565 and its modifications (aka TDL3)", Dr. Web,
2009, Retrieved from

http://www.drweb.com/static/BackDoor.Tdss.565_(aka%20TDL3)_en
.pdf

[4] IceSword (1.22en) [Software], Available from

http://www.softpedia.com/get/System/System-Info/IceSword.shtml
[5] Kaspersky Internet Security (2010) [Software], Available from

http://www.kaspersky.com/
[6] MalwareBytes Anti-Malware (1.50) [Software], Available from

http://www.malwarebytes.org/mbam.php

[7] Microsoft Security Essentials (2.0.657.0) [Software], Available from
http://www.microsoft.com/security_essentials

[8] Microsoft. (June 14, 2010). "Microsoft Security Intelligence Report,"
Vol. 8.

[9] Netstat application [Software], Available from
http://en.wikipedia.org/wiki/Netstat

[10] Partimage Is Not Ghost (PING) (3.00.04) [Software], Available from

http://ping.windowsdream.com/
[11] RegSnap (7.0.2084) [Software], 2010, Available from

http://lastbit.com/regsnap/
[12] "Ring (computer security)", Retrieved from

http://en.wikipedia.org/wiki/Ring_(computer_security)

[13] Rootkit Unhooker (3.8.388.480 SR2) [Software], Available from
http://www.antirootkit.com/software/RootKit-Unhooker.htm

[14] "ThreatExpert Report - TDSS sample," Web, Accessed on 21 March
2011,
http://www.threatexpert.com/report.aspx?md5=ccab8b016f9372fc47

eeb83df0f63dd9.
[15] Tripwire [Software], Available from http://www.tripwire.com

[16] WinDiff (5.2) [Software], 1992, Available from
http://en.wikipedia.org/wiki/WinDiff

[17] Bensalleeh H, Ormerod T, and al e, "On the Analysis of the Zeus

Botnet Crimeware Toolkit," Proceedings from Eighth Annual
Conference on Privacy, Security, and Trust, Ottawa, ON, Canada:

IEEE Press, 2010.
[18] Blunden B, The Rootkit Arsenal: Escape and Evasion in the Dark

Corners of the System. Plano, TX: Wordware Publishing, 2009.

[19] Borders K, and Prakash A, "Web Tap: Detecting Covert Web Traffic,"
Proceedings from 11th ACM Conference on Computer and

Communications Security, New York, NY: 2004.
[20] Cox A, and Golomb G, "The "Kneber" Botnet: A Zeus Discovery and

Analysis", Netwitness, Feb. 18, 2010, Retrieved from

103

http://www.netwitness.com/resources/downloads/2011-the-

kneber-botnet
[21] Davis J. "Using Wireshark to Create Network-Usage Baselines,"

Georgia Tech Research Institute, 2007.

[22] Davis M, Bodmer S, and LeMasters A, Hacking Exposed: Malware and
Rootkits. New York: McGraw-Hill, 2009.

[23] Falliere N, and Chien E, "Zeus: King of the Bots", Symantec, Feb.
20, 2010, Retrieved from
http://www.symantec.com/content/en/us/enterprise/media/security_r

esponse/whitepapers/zeus_king_of_bots.pdf
[24] Gmerek P, GMER (1.0.15.15281) [Software], 2010, Available from

http://www.gmer.net/
[25] Gorman S, and Perez E, (December 22, 2009), "FBI Probes Hack at

Citibank," Wall Street Journal.

[26] Hay P, "Spam Volumes Drop After Spamit Shakeup", M86 Security,
October 2010, Retrieved from

http://labs.m86security.com/2010/10/spam-volumes-drop-after-
spamit-shakeup/

[27] Horn D, Darik's Boot and Nuke (DBAN) (1.0.7) [Software], Available

from http://www.dban.org/
[28] Ionescu A, "NT Internals," Accessed on

http://www.ntinternals.org/index.php.
[29] Jogie N, "Rootkit Analysis – Hiding SSDT Hooks", Securabit, March

31, 2010, Retrieved from

http://www.securabit.com/2010/03/31/rootkit-analysis-hiding-ssdt-
hooks/

[30] Jones A, (September 30, 2010), "Zeus Trojan and Money Moles:
More Reasons to Scan Email Carefully," Wall Street Journal.

[31] Lagerweij B, Bart's Preinstalled Environment (BartPE) (3.1.10a)

[Software], 2006, Available from http://www.nu2.nu/pebuilder/
[32] Lanstein A, "An Overview of Rustock", FireEye Malware Intelligence,

Mar. 19, 2011, Retrieved from
http://blog.fireeye.com/research/2011/03/an-overview-of-

rustock.html
[33] Lyon G, Network Mapper (Nmap) Application (5.51) [Software],

Available from http://www.nmap.org

[34] Macdonald D, "Zeus: God of DIY Botnets", Oct. 14, 2009, Retrieved
from http://www.fortiguard.com/analysis/zeusanalysis.html

[35] Matrosov A, and Rodionov E, "TDL3: The Rootkit of All Evil?", ESET
Security, 2009, Retrieved from
http://www.eset.com/resources/white-papers/TDL3-Analysis.pdf

[36] Mendrez R, "Revisting the King of Spam", M86 Security, July 23,
2010, Retrieved from

http://www.m86security.com/labs/traceitem.asp?article=1362
[37] Ries C, "Inside Windows Rootkits", Vigilant Minds, Inc., May 22,

2006, Retrieved from

http://madchat.fr/vxdevl/library/Inside%20Windows%20Rootkits.pdf

104

[38] Russinovich M, Rootkit Revealer (1.7) [Software], Available from

http://technet.microsoft.com/en-us/sysinternals/bb897445.aspx
[39] Russinovich M, and Solomon D, Windows Internals, Fifth Edition.

Redmond, WA: Microsoft Press, 2009.

[40] Son N, "TDL3: Part I. A detailed analysis of TDL rootkit 3rd
generation", CMCInfosec, 2009, Retrieved from

http://www.layer8howto.net/wordpress/wp-
content/uploads/2010/02/tdl3-analysis-paper.pdf

[41] Sparks S, Embleton S, and Zou C, Windows Rootkits - A Game of

Hide and Seek. In: Handbook of Security and Networks, World
Scientific Press, 2010.

[42] Stewart J, "Black Energy Version 2 Analysis", SecureWorks, March
3, 2010, Retrieved from
http://www.secureworks.com/research/threats/blackenergy2/?threat

=blackenergy2
[43] Stewart J, "Rustock DDoS Attack", SecureWorks, Feb. 2007,

Retrieved from http://www.joestewart.org/rustock-ddos.html
[44] Szor P. (2010). U.S. Patent No. 11/271327. Washington, DC: U.S.

Patent and Trademark Office.

[45] Treit R, "Some Observations on Rootkits", Microsoft, January 7,
2010, Retrieved from

http://blogs.technet.com/b/mmpc/archive/2010/01/07/some-
observations-on-rootkits.aspx

[46] Williams J, "Operation b107 - Rustock Botnet Takedown", Microsoft

Malware Protection Center, Mar. 17, 2011, Retrieved from
http://blogs.technet.com/b/mmpc/archive/2011/03/18/operation-

b107-rustock-botnet-takedown.aspx
[47] Winsrvprf, "Interpreting CPU Utilization for Performance Analysis",

Windows Server Performance Team Blog, Aug. 6, 2009, Retrieved

from http://blogs.technet.com/b/winserverperformance/
[48] Yegulalp S. Review: Six Rootkit Detectors Protect Your System. In:

Information Week.

